
AD-753 120

FEABL (FINITE ELEMENT ANALYSIS BASIC

LIBRARY) USERIS GUIDE

Oscar Orringer, et al

Massachusetts Institute of Technology

Prepared for:

Air Force Office of Scientific, Research

August 1972

DISTRIBUTED BY:

National Technical Information Service
. S. DEPARTMENT OF COMMERCE

5285 Port Royal Road, Springfield Va. 22151

[.....

EA8L
-(.INI~t*. .ELE -- MNT NALSIS'S

BAIC LBARYA.

'*.S l A AU:D

Osa

A AG S .197

AR *O~t *F.C OF SCETF.RSERH

UNITEI S'AT AR-' t

T1 N S F R I C66

7~T('A R7.HNICA

IM
MA 1, IK-II

.-

B Iy.". NOTICES

Qualified requestors may obtain additional
copies from the Defense Documentation Center,
all others should apply to the National
Technical Information Service.

Reproduction, translation, publication, use,
and disposal in whole or in part by or for
the United States Government is permitted.

4,!

i

i4

I L
" "- U N C O J S I ir .L • . . J , -. .

Security Classification

DOCUMENT CONTROL DATA -R & D
(Security clessificatlon of title, body of abstrxct and indexing anno'etton must be entered when the overall report 12 classlied)

I ORIGINATING ACTIVITV (Corporate author) 120. REPORT SECURITY CLASSIFICATION

MASSACHUSETTS INSTITUTE OF TECHNOLOGY UNCLASSIFIED

AEROELASTIC & STRUCTURES RESEARCH LABORATORY 2b. CROUP

CAMBRIDGE, MASSACHUSETTS 02139
3. REPORT TITLE

FEABL (FINITE ELEMENT ANALYSIS BASIC LIBRARY) USER'S GUIDE

4. DESCRIPTIVE NOTES (Type of report and inclueive data&)

Scientific Interim
5. AUTHOR(S) (First name. middle Initial, lat name)

OSCAR ORRINGER SUSAN E FRENCH

6. REPORT DATE I*. TOTAL NO, OF PAGES j75. NO. O" REFS

Aug 1972 105 5
$a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERS)

F44620-70-C-0020 ASRL-TR-162-3
b. PROJECT NO.

9782 -02

C. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned,
61102F this report)

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

TECH, OTHER I AF Office of Scientific Research (NAM)
1400 Wilson Blvd.
Arlington,_Va. 22209

13. ABSTRACT
This guide contains complete instructions for the use of FEABL, a basic software

system developed for finite element analysis at the MIT Aeroelastic and Structures

Research Laboratory. FEABL has been designed primarily for (but is not limited to)
the specialized type of continuum analysis problem encountered in the materials

laboratory. FEABL has also been used successfully as an educational tool in the
finite element analysis course given by the MIT Department of Aeronautics and

Astronautics. The software is modular, and is written in machine-independent

FORTRAN IV. A complete program listing is cortained in Appendix C. Element

subroutines which can be used either independently or in conjunction with FEABL will

be presented in future publications.

a

I NOV 6s- -e UNCLASSIFIED

.UNCLASSIFIED
Security Classification

14. "INK A LINK B LINK C

ROLE WT ROLE WT ROLE WT

FINITE ELEMENT ANALYSIS

STRUCTURAL ANALYSIS

NUMERICAL METHODS

FINITE ELEMENT S0TWARE

MATRIX METHODS

% [UNCLASSIFIED
~Security Classification

AFOSR TR

ASRL TR 162-3

FEABL

(FINITE ELEMENT ANALYSIS BASIC LIBRARY)

USER'S GUIDE

Oscar Orringer

Susan E. French

I

August 1972 D D C

[[BC WIL 1972

Prepared for

Aeromechanics Division
Air Force Office of Scientific Research

Arlington, Virginia 22209
Under

CONTRACT NO. F44620-70-C-0020.

Approved for public release; distribution unlimited.

Aeroelastic and Structures Research Laboratory
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

FOREWORD

The developments documented in this report were carried out

at the Aeroelastic and Structures Resea.-ch Laboratory, Department

of Aeronautics and Astronautics, Massachusetts Institute of

Technology, Cambridge, Massachusetts under Contract jo. P44620-70-

C-0020 from the Office of Scientific Research, U.S. Air Force.

The software system originated in connection with Dr. Orringer's

need to use finite-element analysis for problems in the comnressive

behavior of fiber composites that were being investigated under the

Contract. Dr. Jacob Pome~antz of the Aeromechanics Division, AFOSR

served as technical monitor.

The authors wish to express their appreciation to Prof. Pin

Tong of the Department of Aeronautics and Astronautics for the

numerous helpful suggestions he made remardinR the design of the

FEABL software system. The authors are also indebted to all of the

students in the Departments 1971-72 finite element analysis course

who, under Prof. Tong's guidance, acted as guinea pigs while the

software was still being tested. For his review of this report and

for attendant constructive suggestions, the authors are indebted to

Professor Emmett A. Witmer of the MIT-ASRL.

The computations and testing of the program were carried out

at the MIT Information Processing Center.

ii

ABSTRACT

This guide contains complete instructions for the use of
FEABL, a basic software system developed for finite element

analysis at the MIT Aeroelastic and Structures Research

Laboratory. FEABL has been designed primarily for (but is

not limited to) the specialized type of continuum analysis

problem encountered in the materials laboratory. FEABL has

also been used successfully as an educational tool in the

finite element analysis course given by the MIT Department of

Aeronautics and Astronautics. The software is modular, and is

written in machine-independent FORTRAN IV. A complete program

listing is contained in Appendix C. Element subroutines which

can be used either independently or in conjunction with FEABL

will be presented in future publications.

iii

CONTENTS

Section

1 INTRODUCTION 1

1.1 Purpose and Scope 1

1.2 General System Concepts 4

1.3 General System Organization 4

2 THE FEABL DATA STORAGE SYSTEM 7

2.1 Accessory Data 7
2.1.1 Input-Output Control Parameters 7

2.1.2 Problem Size Parameters 7

2.1.3 Address Index Parameters 8

2.2 The /DATA/ Vector 8

2.2.1 Constraint Vector 9

2.2.2 Address Count Vector 10

2.2.3 Leading Non-Zero Entry Vector 10

2.2.4 Master Assembly List 11

2.2,5 Force/Displacement Vector 15

?.2.6 Master Stiffness Matrix 17

2.3 Modification of the FEABL Data Storage System 19

3 FEABL PROCESS CONTROL 21

3.1 General 21

3.2 Description of the FEABL Software 22

3.2.1 Housekeeping Setup Subroutine for

/DATA/ Vector (SETUP) 24

3.2.2 Subroutine for Detailed Organization

ofthe Master Stiffness Matrix Block

(ORK) 25

3.2.3 Element Assembly Subroutine (ASEMBL) 26

3.2.4 Rotation Transformation Subroutine

(ROTATE) 28

3.2.5 Boundary Constraint Subroutine (BC0N) 32

iv

CONTENTS (Continued)

Section

3.2.6 Stiffness Matrix Factoring Subroutine

(FACTPD/FACTSD) 34

3.2.7 Subroutine for Solution of Simultaneous
Equations (SIMULQ) 36

3.2.8 Subroutine for Extraction of Element

Displacements from the Global Displace-

ment Vector (XTRACT) 37

4 A SAMPLE FEABL PROGRAM 39

5 ADVANCED TECHNIQUES WITH FEABL 46

5.1 Efficient Programming for Large Problems 46

5.2 A Numbering Strategy for Planar Problems 48

5.3 A Short Note on Automatic Data Generation 51

5.4 A Handy Trick 52

5.5 Time-Saving Techniques for Design Studies 53

5.6 Substructuring with FEABL 57

5.7 Error Estimation Methods 59

5.7.1 Irons' Energy Variance Criterion 59'

5.7.2 The Residual Force Method 60

5.7.3 Re-Solution for Residual Displacements 63

5.7.4 The Method of Rigid Body Modes 64

REFERENCES 66

APPENDICES

A C0MM0N Areas Data Requirements 67

B Applying Shoehorn and Stopwatch 68

B.1 Estimation of Core Storage Requirement 68

B.2 Estimation of CPU Time Requirement 69

C FORTRAN IV Listing of' FEABL Software 70

v

SECTION 1

INTRODUCTION

1.1 Purpose and Scope

Finite element analysis programs developed in the past

fall into two 6eneral categories: the "one-shot" program

optimized for solution of a particular problem, or the "systems"

program designed for the non-optimum solution of any problem.

The structural engineer who has a new analysis to perform must

spend a great amount of time either writing his own "one-shot" pro-

gram or learning how to use one of the general "systems". FEABI

attempts to relieve the analyst of these burdens by providing

a basic library which handles the numerical operations common

to all finite element analysis, and which can be understood

and used after a few hours of study. FEABL's current capa-

bilities are limited to static analysis. Other options will

be added in the future, as the need arises, and according

to their usefulness. This guide is written for the analyst

who has some acquaintance with the theory of finite element

analysis and with IBM FORTRAN IV.

THE FEABL software system has been designed primarily for

"materials laboratory" stress analysis. The analysis problems

encountered in this application area are characterized by geometry

which, although not simple, is mathematically describable, and

by stress solution accuracy requirements which can usually be met

with models of 1,000 or fewer degrees of freedom. Stress concen-

tration analysis for two-material systems and for composite-to-

metal step-lap joints are two examples of the materials laboratory

type of problem. Another feature of many of these problems is a

requirement for nonstandard solution methods. For instance,

the boundary conditions may include an undetermined prescribed

displacement, the value of which depends upon satisfaction of an

auxiliary condition on a boundary stress integral; a specific

example is given in Ref. 1. The main features of FEABL, all-

in-core computation and control of the solution process by

the user, are well adapted to the needs of such problems.

Experience in the MIT Department of Aeronautics and

Astronautics has also shown that FEABL is a valuable educational

tool. A budget of $50 to $70 per man on an IBM 370/155 machine

allows each student to solve one or two problems, each having

200 to 300 degrees of freedom. In the approach taken at MIT,

the student is required to program his structure geometry, element

interconnections, and subroutines for generating stiffnesses and

stresses. He must also achieve a general understanding of the

principles upon which the FEABL subroutines are based. Thus, each

student is able to gain some practical experience, as well as

theoretical knowledge in one semester of a finite element analysis

course. This approach is felt to be superior to the traditional

method of having the student learn only how to code the input data

for a particular, complete "systems" program.

The flexibility and economy of the FEABL software system

has been amply demonstrated by various applications in which real

problems were solved during the test/exercise development phase.

The following are examp les abstracted from these applications:

2

Problem Total CPU Total
Description DOF Time (Min) Cost ($)

Displacement analysis 216 0.42 5.37
of two large rigid frame
structures (6 load 426 2.49 13.17
cases each)

Continuum stress 338 1.50 4.50
concentration analysis
with boundary condition
determined by auxiliary 442 2.70 12.00
stress integral (3
complete solutions
required for each case)

Stress analysis of 1,266 3.0 14.00
a large frame in an (Approx.)
oil tanker, using
rectangle and triangle
continuum elements
and flange elements
(6 loading cases)

Pressure distribution 160 No data available
analysis for viscous flow
around a corpuscle
in a blood vessel

Stress analysis, 160 0.13 2.54
including solution
for stress intensity
factor of a sharp
crack, using hybrid
element at the crack

The above examples were run on the IBM 370/155 at the MIT Infor-

mation Processing Center. The costs presented are for production

runs, exclusive of debugging.

3

l .2 General System Concepts

Development of the FEABL software has been based on three

general concepts. First, FORTRAN IV was selected as the program

language, and all FORTRAN syntax rules were followed rigorously.

This makes FEABL as machine-independent as possible, to allow

for use at installations having other than IBM equipment. The

only restrictions are that the FORTRAN compiler software must

permit logical IF statements, variable dimensioning, six-character

variable names, and labelled COMMON declarations. Second, the

software is modular in character. The finite element analysis

process has been decomposed into a series of distinct steps,

and each step which is independent of structure geometry has been

programmed as a separate subroutine. FEABL is thus analogous,

in a sense, to the IBM Scientific Subroutine Package.

The third concept deals with data storage techniques. In

order to minimize wasted storage space, a vector approach has

been adopted. All of the input data for a problem, certain

"housekeeping" data, and internally generated problem data such

as the master stiffness matrix are stored in a single vector,

referred to below as the /DATA/ vector. In addition, control

parameters which locate entries in the /DATA/ vector or manage

input-output operations are organized in four COMMON groups.

1.3 General System Organization

The analyst must provide one or more programs which inter-

face with the FEABL software:

1. A MAIN program which inputs the required problem data

and controls the execution of all sub)rograms.

2. One or more subroutines which generate an element

stiffness matrix (and, if required, equivalent nodal

forces for thermal stress, gravity, etc.) for each

type of element.*

Subroutines from ASRL EGL (Element Generator Library) may be
used. 4

3. One or more subroutines whlch generate element stresses

from the element's nodal displacements.*

Data may be input by reading cards, disk or tape files, by auto-

matic generation techniques, or by a combination of the two

methods. The details of a particular problem will determine

which approach is more efficient. For very simple types of prob-

lems, in which the structure is divided into only a few different

element types and shapes, stiffness matrix and stress generation

may be done within the MAIN program. However, if separate sub-

routines are required for these tasks, pre-existing ones may be

interfaced with FEABL, since the FEABL software package has been

written in a manner such that pre-existing FORTRAN subroutines

may be adapted to run with FEABL with little or no re-programming.

The interface between user-written programs and FEABL

consists of two parts: data location and process control.

Figure 1 illustrates the general features of the data location

interface. The labelled COMMON areas mentioned in the previous

section must appear in the user's MAIN program. This is accom-

plished simply by including identical sets of DIMENSION, COMM01N

and EQUIVALENCE declarations in MAIN and in the FEABL software.

There is no requirement for the element generator subroutines

to communicate with FEABL in this manner; these subroutines need

only be interfaced with user's MAIN by an identical DIMENSION

declaration for the element stiffness matrix and "force/displace-

ment" vector. The latter is a dual-purpose vector in which

element equivalent nodal forces are generated, and which serves

later as a storage area for the solution displacement vector of

the element. The interface between the generator routines and

FEABL is achieved automatically by variable DIMENSION declarations

contained in the FEABL software. The data location interface is

discussed in detail in Section 2.

*Subroutines from ASRL EGL (Element Generator Library) may be

used.

DIMENSIEN

U ser seee.Tit rfequirs a e e

oAIN sterix ue' formec dicesFmcisplacement veetor5=rtes

'La elledJ COMMON Aes.sifesmti

* /DATA/ Vecfor ac oc-Apaee~

* Confro) P4raP#*+ers etrNYVral

FIGURE 1

The process control interface is simply a recognition

that input of problem data and operations on the data must be

performed in a certain sequence. This requires a definite series

of programming steps in user's MAIN program. Section 3 discusses

the process control interface in detail.

I -

SECTION 2

THE FEABL DATA STORAGE SYSTEM

2.1 Accessory Data

The accessory data is divided into four control parameter

COMMON groups. The COMMON declaration statements listed below

for the four control parameter groups must appear in all user-

written MAIN programs.

2.1.1 Input-Output Control Parameters

COMMON /10/ KR, KW, KP, KT1, KT2, KT3

The six parameters in the /10/ group are hardware device

codes, defined as follows:

KR - card reader

KW - printer

KP - card punch

KT1, KT2, KT3 are extra device codes which the user may define

optionally as he pleases. For example, KT1 might refer to a

system direct access disk, KT2 to an external tape unit, etc.

Only the printer device code KW is used directly by the FPEABL

software presented in this guide. The input-output control

parameters are used in FORTRAN READ and WRITE statements, e.g.:

READ (KR,1) NET, NDT
. FORMAT (216)

WRITE (KW,2) NET, NDT
2 FORMAT (16HOT0TAL ELEMENTS=, 16, 1OX, 10HTOTAL DOF=, 16)

The correct values of KW and any other device codes employed by

the user must be established at the beginning of the MAIN program.

2.1.2 Problem Size Parameters

COMMON /SIZE/ NET, NDT

These parameters define the problem size in terms of the

total number of elements (NET) and the total number of degrees

of freedom (NDT) in the whole structure. NDT includes both

7

constrained and unconstrained degrees. In standard solutions

these parameters are established at the beginning of the MAIN

program and remain fixed.

2.1.3 Address Index Parameters

COMMON /BEGIN/ ICON, IK0UNT, ILNZ, IMASTR, IQ, IK

COM1ON /END/ LC0N, LK0UNT, LLNZ, LMASTR, LQ, LK

These parameters control the begin and end locations of

data sub-blocks in the /DATA/ vector. The user establishes cor-

rect values for these parameters by calling FEABL subroutine

SETUP after he has established the /SIZE/ block. Use of the

address index parameters to locate entries in the /DATA/ vector

is discussed in Subsection 2.2.

2.2 The /DATA/ Vector

DIMENSION REAL(xxxx), INTGR(xxxx)
COMMON /DATA/ REAL
EQUIVALENCE (REAL (1), INTGR(l))

The above declarations serve to define the /DATA/ vector

as a one-dimensional array occupying a COMMON area labelled

/DATA/ and having two reference names: REAL for floating point

entries and INTGR for integer entries. These declarations must

appear in the user-written MAIN program. The user chooses the

dimension integer "xxxx" to suit his particular needs. The

DIMENSION declaration with user's value for the length of the

/DATA/ vector must be inserted in each FEABL subprogram, imm.edi-

ately following the subroutine name declaration, e.g.:

SUBROUTINE ASEMBL (LNUM, NDE, ELK, ELQ)
DIMENSION REAL(1000), INTGR(1000)

Some compilers restrict the length of any vector to

32,768 words (8 ,000HEX). If this restriction is encountered,

and the user desires a longer /DATA/ vector, say 50,000 words,

the following form of the declaration statements can be employed:

DIMENSION REAL(25000), INTGR(25000), DUMMY(25000)
COMMON /DATA/ REAL, DUMMY
EQUIVALENCE (REAL(l), INTGR(l))

8

The COMMON /DATA/ declaration must then be changed to the above

form in each FEABL subprogram.

The dual nature of the /DATA/ vector must be recognized

clearly. For example, the 100th entry in the vector may be

treated as either a floating point or an integer quantity in

arithmetic or logical instructions by operating, respectively,

with REAL(100) or INTGR(100). This property will lead to com-

pilation errors if the user attempts to save storage space by

declaring INTGR to be an array of 2-BYTE words (half-words),

while REAL is left as an array of normal 4-BYTE words (full words),

or if the user attempts to run in double precision mode for

floating point arithmetic.

The /DATA/ vector is organized into six blocks, the limits

of which are determined by the values stored in the address

index parameters (Subsection 2.1.3). In normal usage, the first

four blocks contain integer data and the last two contain float-

ing point data. Storage conventions are detailed in the follow-

ing sections, in the order in which the blocks appear in the

/DATA/ vector.

2.2.1 Constraint Vector

This is an integer block which contains the global number

of each degree of freedom at which a displacement iz; to be

prescribed. Entries in the constraint vector are referred to'

by:

INTGR(I) where IC0N<I<LCON

The following example illustrates user action involving the con-

straint vector

INTGR(ICON)=2
INTGR(IC0N+l)=25
INTGR(LCN)=6

9

By means of the above instructions the user has specified that

global displacements 2, 25, and 6 will be prescribed. The pre-

scribed displacements need not be listed in any particular order.

Any excess space in the constraint vector is filled with zeros by

FEABL.

2.2.2 Address Count Vector

This is an integer block which contains information re-

lating .to the absolute address in the /DATA/ vector of each

diagonal entry of the master (global) stiffness matrix. Entries

in the address count vector are referred to by:

INTGR(I) where IKOUNT<I<LKOUNT

To obtain the relevant data for the 11th row, the correct subscript

is:

J=IKOUNT+N-1
INTGR(J) contains address information for row N

Normally, the user has no direct communication with the

address count vector; its contents are generated internally by

FEABL. The absolute address of each diagonal entry is output

for use in debugging. After the output, the data in the address

count vector are modified as follows:

Contents = (Absolute Address of Kii) - i

Subsequently, any stored* entry Kij can be obtained by

referring to:

REAL(KADR)

where the address is given by:

KADR = INTGR(TKOUNT+I-1)+J

2.2.3 Leading Non-Zero Entry Vector

The LNZ vector is an integer block containing the number j

of the column in which appears the leading non-zero entry Kij

Many entries of the master stiffness matrix are not stored in
the /DATA/ vector. See Subsection 2.2.6 for details.

10

of the master stiffness matrix for each row i. Entries in the

LNZ vector are referred to by:

INTGR(I) where ILNZ<I<LLNZ

INTGR(ILNZ+N-1) refers to row N.

Normally, the user has no direct communication with the

LNZ vector; its contents are generated internally by FEABL, and

are output for use in debugging and evaluating displacement

numbering strategies.

2.2.4 Master Assembly List

This is an integer block containing all of the information

which relates the user's local degree of freedom numbers to the

user's global numbering system. The master assembly list is, in

effect, a Boolean logical transformation between the element

displacement vectors, which together form a linearly dependent

set, and the global displacement vector, which is an independent

set. Entries in the master assembly list are referred to by:

INTGR(I) where IMASTR<I<LMASTR

The master assembly list need not be filled, but if it is not,

a zero must be stored immediately following the last active

position.

The master assembly list is subdivided into two sections,

as indicated in Figure 2.

Zero musd be
Loerdln in /DATA/ Xector Zeor i yuseh

IMASTR rMASTR+ NET in First excess LMASTR

4 * Joc cdion

Poin e rs I Giob6QI Excess

(One s-oraie bOF Nunibers S+orase
loca ion per e(evievtt) (f 4AY exists)

FIGURE 2

11

The pointer section consists of one location per element, from

INTGR(IMASTR) to INTGR(IMASPR+NET-1), with the convention that

these locations correspond to the user's elements in ascending

order 1, 2,..., NET. Each pointer contains the absolute address

in the /DATA/ vector of the location where the assembly list

for an element starts, as indicated in Figure 3.

IMASTR Ni = IMASTR+NET NZ N3

N1 I NZI3

Element i Ilemen Z Element 3

,Pointers 'For:

Elemient, 3

Element
FIGURE 3

The remainder of the master list contains the user's

element-by-element sequence of global displacement numbers.

As an illustrative example, consider the set of elements shown

in Figure 4, consisting of two 4-node rectangles and two 3-node

triangles, each with two degrees of freedom per node. The total

length required for the master assembly list is given by:

Pointers: I per element ----------- 4
Rectangles: 8 DOF/element ---------- 16
Triangles: 6 DOF/element ---------- 12

TOTAL ------------------------------- 32

Suppose that IMASTR=101. Then the assembly information, correctly

stored, would appear as shown in Figure 5.

12

4 £4

£7

Element Global Number 4

= GIoa.l IOF NuYm6c rs

Local Nuu berinj

Convevitions for DOF

FIGURE 4

IMASTR

lt LO 103 104 1o 10 107 l10 o i t I Z U3 114 11,r J14

tni.__ Element Elei et ® -Z.
P C T LMASTR.4

117 It$ 119 L20 2L ZLL 12L4 / 12 127 120 119 130 Ili 1JZ

FIGURE 5

13

The following crude set of FORTRAN instructions might be used to

store the assembly information shown above:

NEXT=IMASTR+4
INTGR(IMASTR)=NEXT (establishes pointer for ist element)
INTGR(NEXT) =1
INTGR(NEXT+I)=2

INTGR (NEXT+7) =4
NEXT=NEXT+8
INTGR(IMASTR+l)=NEXT (establishes pointer for 2nd element)
INTGR(NEXT) =5
INTGR(NEXT+I)=6

INTGR(NEXT+5)=8
NEXT=NEXT+6
INTGR(IMASTR+2)=14EXT (establishes pointer for 3rd element)

The use of pointers in the master list allows assemblies

involving as many different types of elements with different

total numbers of degrees of freedom as desired. Also the use

of DOF numbers rather than node numbers permits assembly of

elements having different numbers of displacements at various

nodes without requiring any special programming or conventions.

The user may choose any element and displacement global numbering

schemes and any local displacement numbering conventions he

desires. The only restrictions are that:

1. There must be no gaps in the master assembly list.

2. The array must be filled or, if excess storage exists,

a zero must be stored after the last displacement

number.

3. All element numbers and degree of freedom numbers

must be positive.

4. The lowest element number and the lowest global degree

of freedom number must each be unity.

14

2.2.5 Force/Displacement Vector

This is a floating point block which contains all of the

force and displacement information required for analysis of a

structure. Entries in the force/displacement vector are referred

to by:

REAL(I) where IQ<I<LQ

The Nth entry in the vector is the force or displacement associ-

ated with the Nth global degree of freedom.

Various types of information are overlayed in the force/

displacement vector. First, if the structure being analyzed is

loaded by continuum body forces (e.g., gravity) or is in a thermal

environment, the resulting element equivalent nodal forces must

be assembled along with the element stiffness matrices. FEABL

subroutine ASEMBL uses the force/displacement vector as a storage

area for this purpose. Second, the user must introduce his glo-

bal concentrated nodal forces and prescribed displacements into

the force/displacement vector. Finally, the FEABL solution sub-

programs store the displacement solution in the force/displac-

ment vector by overwriting the prescribed quantities.

The following simple algorithm enables the user to com-

municate with the Nth global degree of freedom:

NN=IQ+N-I
REAL(NN)=...
or
...=f(REAL(NN))

For example, suppose the structure in Figure 4 is to be given

the boundary conditions shown in Figure 6. Global degrees of

freedom 4 and 8 have concentrated forces A and B applied, respec-

tively, while degrees 12 and 15 have displacements C and D

prescribed, respectively. Displacements, 1, 2, 5, 6, 13, and 14

are prescribed to be zero. The following set of FORTRAN

instructions specify these boundary conditions:

15

(a) Establishment of the constraint vector

INTGR(C 04) =1
INTGR(IC0N+l)=2
INTGR(ICON+2)=5
INTGR(IC0!N+3)=6
IiJTGR (ICOq+4~) =12
IN~TGiR CIC0N+5) =13
INTTGR C IC04+6) =14
INTGR(ICON+7)=15

(b) Input or the prescribed displacements:

REAL(IQ) =0.
REAL(IQ+l)=O.
REAL(IQ+14) =0.

REAL(1Q+13) 0.-
REAL(IQ+1II) =C
REAL(iQ+14) =D

(c) Input or the presc..ibed forces:

Rv"AL(IQ+3)=iREAL(IQ+3)+A
ThEAL(IQ+7)=REAL(IQ+7)+B

The instructions (b) and (c) have been written assuming that

element equivalent nodal forces have been assembled into the

force/displacement vector. Thus, all degrees at which displace-

ments are prescribed must be set to their correct values, while

nonzero concentrated global forces must be added to the pre-

existing assembled element forces.

A BC

4 AI
3t I Di

£0r

A) a re ioJconlcenfrctec forces

C, a. re jfobcd prescie4* JLspIoeenS
FIGURE 6

16

2.2.6 Master Stiffness Matrix

This floating point block contains the essential entries

of the master stiffness matrix, stored one row after the other.

Entries in the master stiffness matrix are referred to by:

REAL(I) where IK<I<LK

Normally, the user is not required to communicate directly with

the master stiffness matrix, but an understanding of its detailed

organization will be helpful in debugging.

Since a stiffness matrix is always symmetric, only its

lower triangle need be kept in storage. Thus, the general or-

ganization of the master stiffness array in the /DATA/ vector

may be represented by the diagram shown in Figure 7.

1K

R kWL w3Row I Row S'

FIGURE 7

SignificzAit additional savings in storage may be realized for

problems with many degrees of freedom by taking advantage of

the fact that a master stiffness matrix is normally banded and

sparsely populated. The boundary line of the shaded area in

Figure 8 represents the leading non-zero entry locations in a

hypothetical stiffness matrix. FEABL subprograms which operate

on the master stiffness matrix incorporate logic instructions

which cause the operation to be skipped if the entry Kij lies

in the unshaded area of Figure 8. Thus, the leading zero entries

for each row are not stored, and this is where the address count

vector and the LiZ vector come into play. The actual organiza-

tion of the master stiffness array consists of a sequence of

17

ZNonzero ayic
Zeros store zeroYlot Storeo(entries

FIGURE 8

variable-length sections for the rows of the stiffness matrix.

Figure 9 illustrates a sample sequence.

Column
I 3 4 5 C 7 8 9 .'rK

, I

- wn"ot, -sooro-e "d

l, K11 - K7+, I K - ,,),(1 not !+or e

k#7 fI~ 'I~ IKk., ''rk: 1'I~ 1111 1 u1l17iI

FIGURE 9

18

The algorithms for operating on the master stiffness matrix,

based on the contents of the address count and LNZ vectors are

quite simple:

(For an operation on K:ij row I, column J, J<I)

INDEX=ILNZ+I-l
IF (J .LT. INTGR(INDEX)) Go T0 5
KADR=IKOUNT+I-1
KADR=INTGR(KADR)+J
(To define address of Kij in master stiffness array)

(Operate using REAL(KADR) for Kij)

5 (Skip operation if J<LNZ column number for the row)

2.3 Modification of the FEABL Data Storage System

The data storage system presented above has been designed

for "production" computing. It has been assumed implicitly that

the user will be conducting a great number of studies involving

similar stress analysis problems and employing nearly the same

number of degrees of freedom. Thus, the /DATA/ vector need be

DIMENSIONed only once, after which production object decks of

the FEABL software may be made.

However, the FEABL software may also be placed in on-line

storage in a form which will handle problems of widely varying

size, with only minor modifications. These modifications are

as follows:

1. Delete the COMMON /DATA/ REAL declaration from all

programs and subprograms.

2. Delete the EQUIVALENCE (REAL(l), INTGR(l)) declaration

from all subprograms. (Retain this declaration in

MAIN.)

3. Use the standard declaration:

DIMENSION REAL(2), INTGR(2)

in all FEABL subroutines. (DIMENSION the /DATA/

vector properly in MAIN.)

4. Add the array names REAL and INTGR as arguments of

19

all FEABL subroutines, e.g.:

SUBROUTINE 0RK(LENGTH, REAL, INTGR)
SUBROUTINE FACTPD(REAL, INTGR)

When the on-line version of FEABL is used, only the DIMENJSION

declaration for the /DATA/ vector in the user's MAIN program

need be changed to perform analyses requiring different amounts

of data storage.

20

SECTION 3

FEABL PROCESS CONTROL

3.1 General

For present purposes the finite element analysis of a

structure will be divided into eight programming stages:

1. Establishment of input/output device codes, problem

size, and address index parameters.

2. Input of the master assembly list and organization

of the master stiffness matrix into corresponding

segments.

3. Generation and assembly of element stiffnesses (and

nodal equivalent forces, if any) in global coordinates.

4. Application of rotation transformations to the master

stiffness matrix (and assembled nodal equivalent forces)

at any nodes at which the boundary conditions are

to be given in special coordinate systems.

5. Input of the prescribed quantities, i.e., global num-

bers at which displacements are to be prescribed,

values of prescribed displacements, and accumulation

of values of any nonzero global concentrated forces.

Application of constraints to the master stiffness

matrix and force/displacement vector.

6. Solution for the master displacement vector.

7. Application of inverse rotation transformations to

the master displacement vector, at any nodes where

a rotation was applied in stage 4, to produce a master

displacement vector entirely in the global coordinate

system.

8. Extraction of element displacement vectors from the

global vector; calculation of element stresses from

the element displacement vector.

21

Specific FEABL subprograms are associated with each of the above

stages, according to the following table:

Stage FEABL Subroutines Stage FEABL Subroutines

1 SETUP 5 BC014

2 0RK 6 FACTPD/FACTSD, SIMULQ

3 ASEMBL 7 ROTATE

4 ROTATE 8 XTRACT

Figure 10 illustrates the standard FEABL process sequence in terms

of the eight stages described above.

Analysts who are just beginning to work with FEABL are

advised to observe strictly the standard process sequence out-

lined above. This sequence will be described in full detail

in Section 4 . More experienced analysts may find it convenient

to depart occasionally from the standard process in order to

reduce program length.

3.2 Description of the FEABL Software

The FEABL package consists of the eight subroutines listed

in the table in Subsection 3.1. Each subroutine is associated

with a particular stage in the standard process sequence (except

ROTATE, which is associated with both stages 4 and 7). All FEABL

subprograms are ready to use for in-core finite element analysis,

once the DIMENSION deClaration for the /DATA/ vector has been

inserted (see Subsections 2.2 and 2.3). The following subsections

demonstrate how each of the FEABL subroutines is called, define

the subroutine arguments, and outline briefly what the subroutine

does. A summary table of the COMMON area information required

by each FEABL subroutine is given in Appendix A. Listings appear

in Appendix C.

22

User&. MAIN

Stae I device Cotaes

-t roup SE-igT7

Sta~e 2 assem~biy list R

Sfa~a 3 elemenvts

Sf-aq 4One CALL per

Sta er ifor frip1on

46
Ste 8 le-e

23ON

3.2.1 Housekeeping Setup Subroutine for /DATA/ Vector

(SETUP)

CALL SETUP(LENGTH, NC0N, MASTRL)

LENGTH - A scalar integer numerically equal to the dimen-

sion which the user has assigned to the /DATA/

vector.

NCON - A scalar integer greater than or equal to the

total number of degrees of freedom, in the assem-

bled structure, at which displacements are to

be prescribed.
MASTRL - A scalar integer greater than or equal to the

total number of words required for the master

assembly list.

Based on NCON, MASTRL and the total number of degrees

of freedom in the entire assembled structure (NDT, in the /SIZE/

group), subroutine SETUP organizes the /DATA/ vector by calcu-

lating the address index parameters in the /BEGIN/ and /END/

groups, except for the index LK which defines the end of the

block reserved for the master stiffness matrix. SETUP uses the

argument LENGTH to test whether the user's /DATA/ vector has

at least enough storage available to accommodate the first four

data blocks (constraint vector, address count vector, LNZ vector

and master assembly list). If the /DATA/ vector is too short,

SETUP estimates the total length required for all six data blocks,

based on a reasonable population density for the lower triangle

of the master stiffness matrix, prints the estimate and aborts

the run. if the first four blocks can be accommodated, the con-

straint vector is filled with zeros and control is returned to

MAIN.

24

3.2.2 Subroutine for Detailed Organization of the Master

Stiffness Matrix Block (ORK)

CALL ORK(LENGTH)

LENGTH - A scalar integer numerically equal to the dimen-

sion which the user has assigned to the /DATA/

vector.

Subroutine 0RK produces, in essence, a map for the master

stiffness matrix like that of Figure 9, using the information

contained in the master assembly list to calculate the correct

values of the entries in the LNZ vector. This is accomplished

by first setting each LNZ column number equal to its row number

(diagonal matrix), and then examining the assembly informetion

element by element to re-set the LNZ column numbers, according

to the following algorithm:

1. The smallest global number N for the element is found.

2. The element's global numbers are then treated as

row numbers. If the LNZ column number corresponding

to a row (global number) is greater than N, its value

is re-set to N.

Once the LHZ vector has been established, subroutine 0RK uses

an accumulation process to calculate the absolute address of

the diagonal entry of each row. By convention, the diagonal

is the only entry stored for the first row and is therefore located

by the address index parameter IK:

INTGR(IK0UNT)=IK

Subsequent entries are located by the algorithm:

INTGR(IK0UNT+M-1)=INTGR(IKOUNT+M-2)+M+I-INTGR(ILNZ+M-1)
(Diag Addr for Mth row)=(Diag Addr for row M-l)+(Total no.

of nonzero entries in Mth row)

Conveniently, the address of the diagonal for the last

row in the master stiffness matrix is also the correct value

of LK. Subroutine 0RK now tests the /DATA/ vector by means of

the argument LENGTH. If the /DATA/ vector is too short for the

problem data, an exact calculation of its required length is

25

output and the run is aborted. If sufficient storage is avail-

able, the stiffness matrix map is output and the address count

vector is modified by:

INTGR(IK0UNT+M-I)=INTGR(IK0UNT+M-l)-M; I<M<NDT

for all rows, M. This saves repeated subtraction of the row

number in later subprograms. The correct algorithm for locating

KMN in the /DATA/ vector is now:

KADR=INTGR(IKOUNT+M-I)+N; M>N
K is assigned to REAL(KADR)

Since the next stage of the analysis will involve the accumulation

of data in the master stiffness matrix (and perhaps in the force/

displacement vector), 0RK's last action before returning control

to MAIN is to fill these two data blocks with floating point

zeros.

3.2.3 Element Assembly Subroutine (ASEMBL)

CALL ASEMBL(LNUM, NDE, ELK) ELQ)

LNUM - A positive scalar integer = user's global element

number

NDE - A scalar integer = total number of degrees of free-

dom possessed by the element which is about to

be assembled

ELK - A floating point, two-dimensional square array

which contains the stiffness matrix of the element

about to be assembled.

ELQ - A floating point vector which contains the equiva-

lent nodal forces for the element about to be assem-

bled, or which contains floating point zeros if

there are no equivalent nodal forces.

Since ELK and ELQ are variably DIMENSI0Ned in this sub-

program, elements having different numbers of degrees of freedom

can be handled automatically. However, these arguments must

be DIMENSI0Ned explicitly in the user's MAIN program. For example,

suppose a structure is to be analyzed in plane stress with a

26

combination of 3-node triangle elements (6 degrees of freedom)

and 4-node rectangle elements (8 degrees of freedom). Then the

declaration:

DIMENSION TRIK(6,6), TRIQ(6), RECK(8,8), RECQ(8)

might appear in MAIN. A triangle element would be assembled

by the instruction:

CALL ASEMBL(LNUM, 6, TRIK, TRIQ)

while a rectangle element would be assembled by:

CALL ASEMBL (LNUM, 8, RECK, RECQ)

Subroutine ASEMBL can handle elements having as many as one hun-

dred degrees of freedom (not a serious restriction), If the

assembly of larger elements is attempted, ASEMBL will abort the

run and tell the user to change the DIMENSION of one of its

internal parameters.

ASEMBL examines the section of the master assembly list

belonging to element number LNUM and records the values of the

global displacement numbers in an internal vector called MNUM.

Then, each entry Kii of the lower triangle of the element stiff-

ness matrix (i j), is accumulated into its proper place in the

master stiffness matrix, according to the algorithm:

I=MNUMW(i)

J=MNUM(j)

K --Kifor I>J

Kij1KjI for I<J

(See Subsection 3.2.1 for address algorithm for K1j.) ASEMBL

does not use the upper triangle (i<J) of the element stiffness

matrix; the user may omit calculating these entries to save time.

The vector ELQ of element equivalent nodal forces is accumulated

in the same manner into the proper locations in the master force

vector (fifth block of the /DATA/ vector).

27

3.2.4 Rotation Transformation Subroutine (ROTATE)

CALL R0TATE(N0DE, IR0W, JR0W, KR0W, ZANGLE, YANGLE, XANGLE)

NODE - A scalar integer "convenience" number for the user.

May be positive or negative but not zero. (See

explanation below.)

IR0WP Three scalar integers equal to the global numbers

JR0W of the degrees .qf freedom at the node at which

KROW the rotation is to be performed.

ZANGLE Floating point values of the three Euler rotation

YANGLE angles in degree measure.

XANGLE)

The argument NODE does not enter directly into the trans-

formation calculations, but is printed out in the heading of

the information supplied by ROTATE. Normally, the user assigns

either his node numbers or the series 1, 2, 3,... to a set of

rotations. A positive value of NODE causes the full subprogram

to execute, and is used for stage 4 in the process sequence.

In stage 7, only the solution displacement vector requires trans-

formation; a negative value of NODE will cause execution of the

now unwanted transformation of the stiffness matrix to be skipped.

The global numbers of the degrees of freedom at the node

being rotated may be contiguous (e.g., 13, 14, 15) or separated

(e.g., 5, 10, 15) depending upon the global numbering scheme

the user has adopted. Either form is acceptable to this subpro-

gram. If only two degrees of freedom are to participate in the

rotation (as, for example, in plane stress problems), an integer

zero must be specified for the third global number. If six de-

grees of freedom are to participate (e.g., shell elements), two

separate rotations are required, J.e., one CALL for the trans-

lational and one for the rotational degrees of freedom. Errors

in the global number arguments (e.g., repeating a number or too

many zeros) will cause an abort.

28

The three Euler angle arguments must be specified according

to the conventions illustrated in Figure 11. Let XYZ be the

user's global cartesian axis system, with respect to
which the

element stiffness and equivalent nodal forces have been generated
"

and assembled. Let XYZ by a local coordinate system with respect

to which the displacement constraints are to be specified.z 1

YANGLE

XANLE,

ZANA.GLE

FIGURE 11

29

The following conventions have been adopted in subroutine ROTATE:

1. Axes X, Y are first rotated through angle ZANGLE about

axis Z to the intermediate positions x, y.

2. Axes x, Z are then rotated through angle YANGLE about

axis y, x to the final position X and Z to an inter-

mediate position z.

3. Axes y, z are then rotated through angle XANGLE about

axis X to their final positions Y, Z.

4. Positive angles obey the "right hand rule" of vector

analysis.

Subroutine ROTATE forms the matrix of direction cosines:

= cos(I X) cos(, Y) cos(, Z)

cos(Z*", x) cos(Y,", Y) cos(^Y, z)
co(2X) cos(Z, Y) cos(Z, Z)

from the values of the Euler angles supplied in the argument

list, Then, if argument NODE is positive, ROTATE applies the

following transformations to portions of the master stiffness

matrix K where i, j, k are the global numbers specified

by the user:

Kii Kij Kik

Kki Kkj Kkk

Kil K12 ** Ki Ki,i+l...K i Ki,J+ . K Ki k+l
K jl K J2 Kjiijl-..

Kkl Kk2....

30

Kl K j Kl

2i K2j 2k

KiKl 1

K J-l, i

Kk-li

Kk+l,i

Finally, the corresponding entries of the force/displacement

vector are transformed according to:

Ki)

A few examples will illustrate the proper use of subroutine

ROTATE. First, suppose that global degrees of freedom 1 and 2

are to be rotated by 45 degrees at node 1 in a plane elasticity

problem. The correct instruction is:

CALL ROTATE(l, 1, 2, 0, 45., 0., 0.)

To return the force/displacement vector to the user's global

axis system after the displacement solution has been obtained:

CALL ROTATE(-1, 1, 2, 0, -45., 0., 0.)

Note that only the first angular argument ZANGLE is used in two-

dimensional problems. In a three-dimensional problem, to rotate

31

degrees 4, 5, 6 at node 2 through angles of 15, 30 and 45 degrees

about the Z, y and X axes:

CALL R0TATE(2, 4, 5, 6, 15., 30., 45.)

and after the displacement solution has been obtained;

CALL R0TATE(-2, 4, 5, 6, -45., -30., -15.)

Note that not only the signs, but also the order of application

of the angles is reversed. However, some care is required in

three dimensions. Suppose degrees 7, 8, 9 at node 3 were rotated

only about axes Z and y:

CALL R0TATE(3, 7, 8, 9, 20., 40., 0.)

Then to reverse the rotation after obtaining the displacement

solution:

CALL R0TLTE(-3, 7, 8, 9, -40., -20., 0.)

Note that the unused XANGLE does not participate in the reversal.

The instruction:

CALL R0TATE(-3, 7, 8, 9, 0., -40., -20.)

would be incorrect.

3.2.5 Boundary Constraint Subroutine (BCON)

CALL BC0N

Let 1, Q represent respectively the global displacement

vector and, the global force vector. The result of the first

four program stages has been to supply a right-hand side

and the stiffness coefficients Kij for the force-displacement

relations:

K~uQ
However, the value of u is known at some degrees of freedom,

with the corresponding Q unknown, while the value of Q is known

The term "global" should be taken in a more general sense here.
It refers to the final set of coordinate systems rZ in which
the user will prescribe his boundary conditions.

32

at the other degrees.

Conceptually, the set of all degrees of freedom in the

structure may be divided into two subsets: Those at which forces

are prescribed (F) and those at which displacements are

prescribed (D). When the user specifies the values of the pre-

scribed quantities, Q becomes a "force/displacement" vector

in fact:

4V (A means 0.

Q prescri6ea q~antity)

and:

U = unknown displacements
F

QD = unknown reaction forces

The force-displacement relations may be partitioned in a similar

manner: LK,, KFD UZF QF

Subroutine BC0N transforms the force-displacement relations from

the above form to:

%KP 01 UD

With the above "right hand side" in the force/displacement vector,

standard equation-solving techniques may be used to produce the

solution displacement vector. Before making the transformation,

BC0N arranges the entries of the constraint vector (Subsection 2.2.1)

33

in ascending order and checks for the presei ce of global numbers

(positive integers). The run is aborted if no global numbers

are found.

3.2.6 Stiffness Matrix Factoring Subroutine (FACTPD/FACTSD)

CALL FACTPD

or

CALL FACTSD

The force-displacement relations are solved by Choleski's

direct method, which consists of two programming steps:

1. The master stiffness matrix is factored into a triple

product.

2. The displacements are solved for sequentially, in

three sub-steps.

Subroutine FACTPD/FACTSD accomplishes the first programming step.

The master stiffness matrix K is factored into the form:

K=LDLJ

where L is a lower triangular matrix:

1 0 0 0.04

L21 1 0 0...

L L31 L32 1 0.•.

L41 L42 L43 1.0.

and = D2 ...) is a diagonal matrix. The factor-

ing algorithms are:

34

OTi
iZ) . .) Nbr

where:

J(n) = Leading Nonzero Entry Column Number for Row n
J(m) = Leading Nonzero Entry Column Number for Row m
J(m,n) = max(J(n), J(m))

The master stiffness matrix is destroyed and replaced by the

entries of L and D as the factoring process is executed.

The entries L (m>n) and D are stored respectively at K (m>n)
rin m mn

and K M The unit diagonal entries of L are not stored.

FACTPD/FACTSD tests the entries of D for nonsingularity

and positive-definiteness as they are created. K is positive-

definite if all D m>0. Rows for which D m<0 are reported. If any

Dm is found to equal zero exactly, K is singular; the row in which

the singularity was discovered is reported and the run is aborted.

The names FACTPD and FACTSD refer to different entry points

in this subprogram. If K is supposed to be positive-definite

(as in the case of a structure analyzed by compatible displace-

ment elements), FACTPD should be called. If errorz were made

in the assembly or constraint stages %f the program, they will

appear now as Dm<0 in one or more rows, and FACTPD will abort

the run. If K is not necessarily positive-definite (as in

the case of a structure analyzed by hybrid stress-displacement

elements), FACTSD should be called. FACTSD continues execution even

if there exist Dm <0. If the FEABL software is to be converted

to the on-line storage version (Section 2.3), be sure to make

the array names REAL, INTGR arguments of both entry points.

35

FACTPD/FACTSD also makes a rough estimate of the condition-

ing of K by calculating the so-called rounding error parameter

(see Ref. 2, pg. 81):

E -ny (ID,/IKVO#A)

E is a measure of how many significant figures of information

have been lost in the diagonal entries, as a result of the factor-

ing algorithm. The run is aborted if E<10 - 5 . The user must

keep in mind the fact that the rounding error parameter is an

imperfect conditioning measure. If FACTPD/FACTSD reports that

no significant figures have been lost, it does not necessarily

follow that there is no error in the displacement solution.

Advanced techniques for realistic solution error estimates are

discussed in Section 5.

3.2.7 Subroutine for Solution of Simultaneous Equations

(SIMULQ)

CALL SIMULQ(ENERGY)

ENERGY - A scalar floating point variable, the value of

which is undefined when SIMULQ is called.

With the stiffness matrix in factored form K- LDLT ,
let P-TVU and R-DP . Then:

LR= Q

can be solved sequentially for R1 , R2 ,..., RNDT via the algorithm:
R 1=Q 1

RM .- (Lmj R j) n .. Z,3, ... ,NDT

('4)

Then:

Pyn -- R/D" i) Z) .. NDT

36

'

Finally, the displacement solution is obtained by solving

sequentially for UNDT, UNDTlI,... uI according to:

N.OT = NDT

NDr
= P- : L.24.) AD7-i J07-2..~

As SIMULQ carries out these three sub-steps, the prescribed

vector Q is first replaced by R , then R is replaced by P

and finally P is replaced by U . Q and u are printed

out by SIMULQ.

Since the approximate value of the strain energy in the

structure is often useful to the analyst, this quantity is cal-

culated by SIMULQ during execution of the solution steps. If

the factored form of K is introduced into the strain energy

expression, there results:

Strain Energy= X UJ Ku (uTL) D(LU) D pT~p

Thus, the straightforward algorithm:
14DT

Strain Energy= D (P

can be used. The value of the strain energy thus calculated

is printed out. At the end of execution of subroutine SIMULQ,

the force/displacemeat vector (fifth block in the /DATA/ vector)

contains the master displacement solution vector, and the strain

energy value has been assigned to the argument ENERGY.

3.2.8 Subroutine for Extraction of Element Displacements

from the Global Displacement Vector (XTRACT)

CALL XTRACT(LNUM, NDE, ELQ)

LNUM - A positive scalar integer equal to user's global

element number

37

NDE - A scalar integer equal to the total number of degrees

of freedom in the element

ELQ - A floating point vector at least NDE words long.

The entries of ELQ are undefined when XTRACT is
called.

If the analyst desires to calculate stress or strain dis-

tributions in his structure, he ccmmonly uses transformations

between stress or strain and nodal displacements:

where C,W are respectively vectors of strain and stress com-

ponents at selected points in the element domain, and where

U.e is the vector of element nodal displacements, i.e., a subset

of the global vector U . Subroutine XTRACT selects the correct

subset Lte out of U , based upon thB information contained

in the user's master assembly list. The values of U.1 are

placed in the argument vector ELQ.

38

SECTION 4

A SAMPLE FEABL PROGRAM

In order to illustrate further the data location and

process sequence interfacing, sample user programs will be de-

veloped for analysis of the truss structure shown in Figure 12,

The structure consists of 16 bars and 18 degrees of freedom in

the XY plane.

Y
6s- - --- iO 7t.

Y

-+s ° XConven+ion5

FIGURE 12

Local number conventions for the ®th typical bar element are

shown at the right. With these conventions, the stiffness matrix

of the typical bar element is given by:

39

CSo (Symetri c)

--- Sin oao s in"
- os20C Sinoc Cos a cos24

sin cos fO sinz

where:

Cos 4 -) (X, -

and where E, A are the bar's modulus and cross section area.

Also, once the displacements Ul, u2 , u 3 , u4 are known for the

element, its elcngation may be calculated as:

and the load in the bar is then given by:

P= FAg/

where e and e< are defined as above.

The user decides to read the properties and nodal coordi-

nates for each element, each time they are required (a rather

inefficient procedure). Reading is to be done by the generator

subroutine, rather than in MAIN; however, the card reader device

code will be established in MAIN. Therefore, the user programs

his stiffness matrix and stress generator subroutines as follows:

4O

Stiffness Matrix Generator

SUBROUTINE BARK (ELKS ELQ)
DIMENSION ELK (4, s), ELQ (4)
COMMON /10/ KR, KW, KP, KT1, KT2, KT3

C INTERFACE WITH 10 CONTROL PARAMETERS IS OPTIONAL
91 FORMAT (6E10.3)

READ (KR, 91) X1, Y1, X2, Y22 E, A
C CALCULATE BAR LENGTH

BARL=SQRT ((X2-Xl)** 2+(Y2-Y1)** 2)
C CALCULATE SINE AND COSINE

S=(Y2-YI)/BARL
C=(X2-X1')/BARL

C CALCULATE ENTRIES IN LOWER TRIANGLE OF ELK-ASEMBL DOES
C NOT USE UFPER TRIANGLE

ELK (1 1)=E*A*C*C/BARL
ELK (2, 1)=E*A*S*C/BARL

etc.

ELK (4, 4)=E*A*S*S/BARL
C ESTABLISH ZERO ELEMENT EQUIVALENT NODAL FORCES

DO 10 I=1, 4
10 ELQ (i)=0.

RETURN
END

Stress Generator

SUBROUTINE BARF (LNUM, ELQ)
DIMENSION ELQ (4)
COMMON /10/ KR, KW, KP, KT1, KT2, KT3

91 FORMAT (6E10.3)
92 FORMAT (21HOBAR FORCE IN BAR NO., I4, 2H =, E10.3, 3H LB)

READ (KR, 91) Xl, YI, X2, Y2, E, A
BARL = SQRT ((X2-XI)** 2+(Y2-YI)**2)
S=(Y2-Y1)/BARL
C=(X2-X1)/BARL
FORCE=E*A*(C*(ELQ(3) - ELQ (1)) + S* (ELQ(4)-ELQ (2)))/BARL
WRITE (KW, 92) LNUM, FORCE
RETURN
END

Subroutines BARK and BARF are ready to use in conjunction with

the FEABL software. The user now begins the construction of

his MAIN program, one stage at a time.

41

Stage 1: Program Heading (Data Location Interface), Device

Code and Problem Size Establishment

The user estimates that a 1000-word /DATA/ vector will

be more than adeauate for the problem. Required device codes

are the card reader (5) and printer (6).

C MAIN PROGRAM FOR SOLUTIO14 OF TRUSS PROBLEM
DIMENSION REAL(1000), INTGR(1000)
DIMENSION ELK(4, 4), ELQ(4)
COMMON /10/ KR, KW, KP, KT1, KT2, KT3
COMMON /SIZE/ NET, NDT
COMMON /BEGIN/ ICON, IKOUNT, ILNZ, IMASTR, IQ, IK
COMMON /END/ LCON, LKOUNT, LLNZ, LMASTR, LQ, LK
EQUIVALENCE (REAL(l), INTGR(l))
KR=5
KW=6
NET=16
NDT=18
CALL SETUP (1000, 5, 80)

C END OF STAGE 1

The user has called for space for five constraints: master

displacements 2 (after a -450 rotation of 1 and 2), 7, 8, 13

and 14. The assembly list must allow room for 16 elements x

(4 DOF plus 1 pointer per element) = 80 words. The first

declaration:

DIMENSION REAL(!000), INTGR(1000)

is also duplicated and placed in each FEABL subroutine.

Stage 2: Assembly List Input and Organization of K

The user recognizes that the pointers will occupy locations

IMASTR to IMASTR+15 (see Section 2.2.4). He chooses to write

specific assignment instructions for each element:

INTGR(IMASTR)=IMASTR+16 (Pointer for 1st element)
INTGR(IMASTR+16)=1
INTGR(IMASTR+17)=2
INTGR(IMASTR+18)=7
INTGR(IMASTR+19)=8

42

Stage 1: Program Heading (Data Location Interface), Device

Code and Problem Size Establishment

The user estimates that a 1000-word /DATA/ vector will

be more than adequate for the problem. Required device codes

are the card reader (5) and printer (6).

C MAIN PROGRAM FOR SOLUTION 0F TRUSS PROBLEM
DIMENSION REAL(1000), INTGR(1000)
DIMENSION ELK(4, 4), ELQ(4)
COMMON /10/ KR, KW, KP, KT1, KT2, KT3
COMMON /SIZE/ NET, NDT
COMMON /BEGIN/ ICON, IKOUNT, ILNZ, IMASTR, IQ, IK
COMMON /END/ LCON, LKOUNT, LLNZ, LMASTR, LQ, LK
EQUIVALENCE (REAL(l), INTGR(1))
KR=5
KW=6
NET=16
NDT=18
CALL SETUP (1000, 5, 80)

C END OF STAGE 1

The user has called for space for five constraints: master

displacements 2 (after a -1450 rotation of 1 and 2), 7, 8, 13

and 14. The assembly list must allow room for 16 elements x

(4 DOF plus 1 pointer per element) = 80 words. The first

declaration:

DIMENSION REAL(1000), INTGR(1000)

is also duplicated and placed in each FEABL subroutine.

Stage 2: Assembly List Input and Organization of K

The user recognizes that the pointers will occupy locations

IMASTR to IMASTR+15 (see Section 2.2.4). He chooses to write

specific assignment instructions for each element:

INTGR(IMASTR)=IMASTR+16 (Pointer for 1st element)
INTGR(IMASTR+16) =l
INTGR(IMASTR+17) =2
INTGR(IMASTR+18) =7
INTGR (IMASTR+19) =8

42

INTGR(IMASTR+7)=IMASTR+44 (pointer for 8th element)
INTGR(IMASTR+44)=7
INTGR(IMASTR+45)=8
INTGR(IMASTR+46)=9
INTGR(IMASTR+47)=10

INTGR(IMASTR+15)=IMASTR+76 (pointer for 16th element)
INTGR(IMASTR+76)=7
INTGR(IMASTR+77)=8
INTGR(IMASTR+78)=15
INTGR(IMASTR+79)=16 (80th location in master assembly list)

At this point, it is advisable to dump the assembly list for

debugging purposes if there is any doubt about its accuracy.

Dumping may be done by:

WRITE (KW, 5) (INTGR(I), I=IMASTR, LMASTR)

5 FORMAT (IX, 1010)

Finally:

CALL 0RK(1000)

C END 0F STAGE 2

Stage 3: Generation and Assembly of Element Properties

In this stage, the user merely invokes the appropriate

subroutines in a loop.

D0 10 LNUM=1, NET
CALL BARK (ELK, ELQ)
CALL ASEMBL (LNUM, 4, ELK, ELQ)

10 CONTINUE
C END 0F STAGE 3

Stage 4: Rotation Transformations

In the present problem, only the lower left node (Figure 12)

requires rotation. Master degrees of freedom number 1 and 2 %

must be rotated by -45 degrees.

CALL ROTATE(l, 1, 2, 0, -45., 0., 0.)
+ + +
Quantities for 3-D problems are not used

C END 0F STAGE 4

413

Stage 5: Boundary Conditions

Displacements 2, 7, 8, 13, 14 are constrained, and the

constraint vector starts in INTGR(l) (ICON=1). Therefore:

INTGR(1)=2
INTGR(2)=7
INTGR(3)=8
INTGR(4)=13
INTGR(5)=14

The constrained displacements are all prescribed to be zero.

Only the nonzero prescribed forces need be input; these are 1,000

lb. each at the 15th and 17th degrees of freedom. Therefore:

C PRESCRIBED DISPLACEMENTS
RLAL(IQ+l)=U.
REAL(IQ+6)=0.
REAL(IQ+7)=0.
REAL(IQ+12)=0.
REAL(IQ+13)=O.

C ACCUMULATE PRESCRIBED FORCES
REAL(IQ+14)=REAL(IQ+1I4)+1000.
REAL(IQ+16)=REAL(IQ+I6)+1000.
CALL BCON

C END OF STAGE 5

Stage 6: Choleski Solution

CALL FACTPD
CALL SIMULQ(ENERGY)

C END OF STAGE 6

Stage_7: Inverse Rotation to Obtain Global Displacements in

Global Cartesian Coordinates

A rotation of -450 was performed at node 1 before the

boundary conditions were imposed. Since all element calculations

are done with respect to the unrotated XY axis system, this rota-

tion must be reversed before element stresses are calculated:

CALL ROTATE(-L, 1, 2, 0, 45., 0., 0.)
C END OF STAGE 7

Stage 8: Calculation of Element Stresses

In this case, bar forces are to be calculated. Again,

the user merely invokes the proper subroutines:

44

DO 20 LNUM=1, NET
CALL XTRACT (LNUM, 4, ELQ)
CALL BARF (LNUM, ELQ)

20 CONTINUE
C END 0F PROG

STOP
END

if the reader has grasped the material presented up to

this point, he now has enough familiarity with FEABL to use it,

albeit somewhat inefficiently. However, some additional degree

of sophistication is desirable for the instructions which input

problem data such as the assembly list. It is apparent that

a straightforward 3et of instructions such as that given in the

sample program is quite cumbersome, especially for problems in-

volving more elements with more degrees of freedom per element.

Improved programming techniques are discussed in the next

section.

45

SECTION 5

ADVANCED TECHNIQUES WITH FEABL

5.1 Efficient Programming for Large Problems

When a structure is to be analyzed with a large number

of elements and many degrees of freedom, there often occurs a

definite trend toward regularity in the element set. The analyst

should recognize two distinct forms of regularity, and he should

be prepared to take advantage of each in writing his MAIN program.

First, consider the truss structure shown in Figure 13,

with all bays having the same dimension vertically and horizontally.

x
4,,

44

L

; FIGURE 13

The bar elements may be said to possess a degree of regularity,

in that there are only four different types of elements in the

structure:

1. Horizontal bars

2. Vertical bars.

3. 4450 diagonals.

4. -450 diagonals.

Since an element stiffness matrix depends upon nodal coordinates

only through differences in the coordinate values (see beginning

of Section 4), there will occur only four independent element

stiffness matrices for the structure of Figure 13: one for each

of the element types listed above. Thus, for example, the element

stiffness matrix for a typical horizontal bar may be generated

once and assembled repeatedly (32 times for the present case).

The technique may be repeated again for the 30 vertical bars,

24 +450 diagonals and 24 -451 diagonals, achieving considerable

savings in execution time.

The second form of regularity involves the way in which

displacements and elements may be numbered. Often an element

set is topologically equivalent to a rectangular or square array,

even if it is not geometrically regular. For example, suppose

the trapezoidal continuum shown in Figure 14(a) is to be analyzed

in plane stress using 32 3-node triangle elements. For numbering

purposes the element and displacement sets are topologically

equivalent to the square net shown in Figure 14(b). It is then

possible to generate the assembly list for the structure by a

double D0 loop. Each element .is "located" in the structure via

an intersection of one of the element strings LX and one of the

element strings LY. The element number and its master displace-

ment numbers may be generated from the values of LX and LY.

Taking advantage of numbering regularity enables the user to

input large rections of the assembly list with relatively few

FORTRAN instructions.

47

82

L%

~(b)

FIGURE 14

5.2 A Numbering Strategy for Planar Problems

Suppose the set of MxN rectangular plane stress ehments

shown in Figure 15 is to be assembled, where M, N may be quite

large. If the numbering strategy shown in the figure is adopted,

beginning with element 1 and displacements 1, 2 at the lower

left corner and ending with element MN and displacements

Z(M+l) (N+l)-l, 2(M+1) (N l) at the upper right corner, then

each element number can be given as a function of its LY, LX

string coordinates:

LNUM=LY+N*(LX-I) where I<LY<N and l<LX<M

In order to create similar functions for the element assembly

list, a local numbering convention must be adopted. If the

48

- ' - 66A

Ay LYL

hf4-;

Strafe , L

N

ol2 oLocal

No~s% erku15

LYCove1ov

M1 Eleevif'rgo

FIGURE 15

convention shown is Figure 15 is used, the global DOF numbers

may be calculated as follows: Local displacements 1, 2 can be

considered to lie on strings LX, LY; hence:

(Local #l)=2*LYl+2*(N+l)*(LXl1)
(Local #2)=(Local #1)+l

Local displacements 7, 8 follow directly from the master numbering

scheme:

(Local #7)=(Local #2)+l=(Local #1)+2
(Local #8)=(Local #7)+l=(Local #1)+3

Local displacements 3. 14 are shifted one LX string to the right;

hence they are 2*(N+l) ahead of 1, 2:

(Local #3)=(Local #l)+2*CN+l)
(Local #L)=(Local #l)+2*(N+l)+1=(Local #2)+2*(N+l)

and finally:

(Local #5)=(Local #1)+2*(N+l)+2=(Local #7)+2*(N+l)
(Local #6)=(Local #1)+2*(N+l)+3=(Local #8)+2*(N+1)

With the algorithms derived above, it is quite easy to

develop an efficient procedure to input the entire assembly list

into the /DATA/ vector. The reader will recall that the pointer

49

for element number LNUM is stored in INTGR(IMASTR+LNUM-1).

One additional integer variable, called NEXT, is required. NEXT

is to be incremented after completion of the input for one ele-

ment, so that the next value of NEXT is the address of the next

available location in the master assembly list, i.e., NEXT=

the value of the pointer for the next element. The entire assembly

list is then generated and input by the following set of FORTRAN

instructions:

(Values of M and N defined elsewhere in program)

C INITIALIZE POINTER VALUE
NEXT=IMASTR+NET

C L0P OVER ELEMENT STRINGS
D0 20 LX=l, M
DO 20 LY=l, N
LNUM=LY+N* (LX-1)
IPTR=IMASTR+LNUM-1

C ESTABLISH POINTER FOR THE ELEMENT
INTGR(IPTR) =NEXT

C CALCULATE JDl=l LESS THAN MASTER NO. OF 1ST DVF, JD3=l
C LESS THAN MASTER NO. OF 3RD D0F

JDI=2*(LY-I)+2*(N+I)*(LX-l)
JD3=JDl+2*(N+l)

C ASSIGN DOF MASTER NOS. TO LOCATIONS NEXT, NEXT + 1,..., NEXT + 7
C IN /DATA/ VECTOR

J=O
K=0
DO 10 I=1,8
II4DEX=NEXT+I- 1
IF(I .GT. 2 .AND. I .LT. 7) G0 T0 5
J=J+l
JD=JDI
II=J
GO TO 10G5 JD0D 0............. '

5 'JD=JD3
K=K+ ,.
II=K

10 IIITGR(INDEX)=JD+II
C INCREMENT NEXT L0CATION

20 NEXT=NEXT+8
C STORE A ZER0 IN NEXT LOCATION (ASSUMING EXCESS STORAGE
C IIN MASTER ARRAY)

IF (NEXT .LE. LMASTR) INTGR(NEXT)=0

50

The last IF statement above is a good form of insurance for cases

in which the user may have overestimated the number of words

required for his master assembly list.

A similar scheme for structures consisting of triangle

elements (Figure 14) can be developed if the "right-side-up"

and "upside-down" elements are treated as separate sets.

The automatic generation technique derived above was de-

veloped for a structure with complete topological regularity;

however, it may be extended to cover large portions of less regular

structures with relatively little additional programming. There

is also a hidden advantage: the numbering strategy adopted in

Figure 15 is not only easy to produce, but a]so minimizes the

population of the master stiffness matrix if none of the elements

have mid-side nodes.

5.3 A Short Note on Automatic Data Generation

The reader will recall that the hypothetical user in

Section 4 chose to read in his element coordinates and basic

properties from data cards. This procedure can be time-consuming

and expensive for problems involving large numbers of elements,

especially when the element set geometry is not regular in the

sense of Subsection 5.1 and Figure 13. However, it often happens

that the element set geometry is regular in the sense that the

element coordinates may be calculated from a general algorithm

based upon the element string concept discussed in the previous

subsection, i.e.:

DO 20 LX=l, M
DO 20 LY=l, N
LJUM=LY+N* (LX-I)
(=P(LX, LY))

where ={Xl, YI, X2, Y2,...} is the element coordinate vector

and I is a floating point function of LX and LY. An algorithm

of this type may be used to generate the data base, as it is

51

L%.

needed, for calculation of element stiffness matrices and element

stresses. This results in the trade-off of a slight increase

in execution time and some decrease in required storage space,

since it is not necessary to carry large vectors of global nodal

coordinates in core.

5.4 A Handy Trick

There often occur plane elasticity problems in which a

large number of degrees of freedom are to have prescribed displace-

ments. For example, suppose a rectangular domain such as the

one shown in Figure 15 is to be analyzed, and that all four edges

of the domain are clamped. This means that 25 to 30 per cent

to the total degrees of freedom will have prescribed displacements.

A significant amount of execution time may be saved by

modifying the numbering scheme shown in Figure 15, so that the edge

degrees of freedom have the largest global numbers. Let NDT

be the total number of degrees and NFT be the total number of

unconstrained degrees. Then the modified number scheme assigns:

1, 2,..., NFT

to the unconstrained degrees and:

NFT+l, NFT+2,..., NDT

to the degrees along the edges of the structure. Program stages

1 through 5 are completed in standard fashion.

However, just before factoring K , the user may fool

FEABL by inserting:

ITEMP=NDT
NDT=NFT

in his MAIN subprogram. Subroutines FACTPD/FACTSD and SIMULQ

will then solve only for the unknown displacements 1, 2,..., NFT.

At the beginning of Stage 7, when the full displacement vector

may be required again, the user inserts:

NDT=ITEMP

52

4.

The real value of this trick depends on a trade-off between

execution time and core storage. The modified numbering scheme

will result in a requirement for additional storage space for K ,

over what is needed by the numbering scheme discussed in Subsection 5.2.

The excess requirement is given by:

ASS(NDT-NFT) (NDT-B)

where B is the average semi-bandwidth of the unconstrained part

of K

5.5 Time-Saving Techniques for Design Studies

The "design study" approach to finite element analysis

may take any of the following forms:

1. Consideration of a number of loading environments

applied to a unique structure with unique displacement

boundary conditions.

2. Analysis of a unique structure under various environments

in which prescribed displacements are changed, as

well as prescribed forces.

3. Consideration of variations in the structure itself

to meet a given environment.

The first two categories are self-explanatory. An example of

the third might be an analysis of a truss structure in which

the compression bars are checked for buckling:

r r

If any bar were found to be under a compressive load greater

than its Pcr' the program might incorporate an algorithm for

redesigning the bar and re-analyzing the new structure.

The above categories of problems can be studied using

FEABL with only minor modifications. No changes are required

in the data location interfaces and if a change to the process

sequence interface is required, it involves only an intelligent

53

: - :-' i " l' ' , , : " '', l:' '° "..M

application of the rules presented above. However, the analyst

must be familiar with programming techniques required for com-

munication between his computer's core and external storage devices

(system disks, drums, tape units). These techniques vary from

installation to installation and will not be discussed in specific

terms here. The analyst should consult the operating manuals

applicable to the system which he will be using.

Load environment case study is the easiest type of multi-

solution problem to handle. Since the displacement boundary

conditions are not varied, only one assembly and factoring of

the master stiffness matrix need be done. The factored form

of K is held in the /DATA/ vector while each prescribed vector

is formed and the displacements are solved for. The quantity:

*A
~ q l KaF

A

Q=Assembled Element Equivalent Nodal Forces
QE-- Aand the prescribed displacements it D must be saved. These two

quantities are found in the Force/Displacement Vector:

in the /DATA/ vector just after BCON is called. (The prescribed

external loads 0 F' on the other hand, are not really needed

until SIMULQ is called.) Figure 16 illustrates the modified

FEABL process sequence which will accomplish this result.

The second category involves essentially the same techniques

as the first. However, in this case the data which must be saved

in external storage are:

1. E - Assembled element equivalent nodal forces.

2. K - Assembled master stiffness matrix prior to

boundary condition application.

54

to* to external
Si Orale Return

to core

FEAOL + User I Srr~w

r L StressesFACT PO/FACTSD/ QF t.,

Loop Over All Cases

FIGURE 16

For each case the user must input the contents of the constraint

AA A
vector, fetch Q , accumulate aF and reset fetch K
and finally re-enter the standard FEABL process at the point

where BC0N is called.

Significant time savings are gained in the third problem

category if the design changes involve only a few elements in

a structure composed of a large number of elements. Suppose

that the displacement solution has been found from the fr.rce-

displacement relations for the initial structure:

Ku = QpF

During calculation of the element stresses, it is discovered

that design changes are required in one or more elements; these

changes will appear in the force-displacement relations as a

modification A K of the master stiffness matrix and (possibly)

a modification AQ E of the assembled element nodal force vector.

55

The new force-displacement relations:

must then be solved for the modified displacements UL.

To program the design change technique with FEABL, the

user must take the following nonstandard actions:

1. Output K and QF+ to external storage after

assembly and input of prescribed quantities, but before

calling BC0N.

2. After the initial displacement solution i has been

obtained, transfer it to temporary core storage out-

side the /DATA/ vector. (The Force/Displacement Vector

area in the /DATA/ vector wlll be required for accu-

mulation of ARE.) Zero the Force/Displacement Vector

and the Master Stiffness Matrix Array.

3. Calculate stresses from U , element-by-element. (The

user will need his own version of XTRACT to extract

the proper U from temporary core storage.) When
elA

a design change is required, calculate Ak el and AQel

and accumulate them using FEABL subroutine ASEMBL.

i. Apply rotation transformations (if any) to AIK and
A A

AQ,# reset entries of AtE to zero where displacements

are prescribed.

5. Fetch K and + from external storage and accumu-F+ E A
late them to AK and AQE. Apply boundary conditions

and solve for i/.

The above process may be repeated in an iterative designA

process, with K +AK, aF + +AQ* at the beginning of each

new design step playing the role of the initial values + , F+ 4 *

This procedure is referred to as iterative updating, and is also

applicable to nonlinear elastic and elastic-plastic analysis

of continua. In these types of analysis the "design change"

56

results from following a material stress-strain curve and/or

testing the satisfaction of a yield conditon (e.g., the Mises-

Hencky criterion).

5.6 Substructuring with FEABL

The FEABL software system has been designed primarily

for in-core solutions. Up to 1,500 degrees of freedom can be

handled on currently available hardware with 500 KBYTE (125 KWord)

memory. FEABL's in-core capability may be extended by means

of the substructuring technique outlined briefly here.

Figure 17 illustrates a domain which has been divided

into a small number of substructures. The desired stress solution

accuracy is on a scale much :maller than the substructure dimension,

Sub struct Substruct

Sitbitnct SuI~strMAt

Sesire. Suhstructre cicte
-ccur4cY into ordinary elemevts

FIGURE 17

so each substructure is subdivided further into ordinary elements.

Let the subscripts I and B refer, respectively, to the interior

and boundary degrees of freedom in a substructure. Then the

57

" :"- ... -.- .

force-displacement relations for the substructure may be partitioned

into: K~~Q

The interior degrees of freedom may be eliminated by the process

of static condensation, which transforms the substructure force-

displacement relations to the form:

KC (-u-v ±

Each substructure may now be considered as a "superelement"

having degrees of freedom only on the interelement boundaries,

as shown in Figure 18. The quantities -K and are thenBB ad aete

FIGURE 18

assembled in the same manner as the stiffness matrices and equiva-

lent nodal force vectors for ordinary elements. After the displace-

ment solution on the substructure boundaries has been obtained,

the original force-displacement relations for each substructure

may be used, with UB as prescribed displacements, to obtain

the interior solution.

58

In addition to extension of FEABL's problem size capability,

the substructuring technique may also be used to reduce roundoff

error and to save execution time. All of these improvements

depend upon optimization of the relative numbers of substructures

and of ordinary elements within the substructures. Use of the

substructuring technique with FEABL software will be discussed

in detail in a future publication.

5.7 Error Estimation Methods

Rigorous mathematical proofs exist showing that a finite

element analysis for the stress and displacement distributions

in a structure converges to the exact solution as the number of

elements in a given domain is increased, provided only that certain

easily satisfied restrictions are obeyed (Ref.3). However, since

all calculations done in a digital computer are imprecise, errors

due to roundoff will occur. It has been shown (Ref, 11) that

roundoff error increases in an extremely complex way as the number

of elements is increased. Therefore, it is advisable to resort

to some numerical method which will produce a reasonable estimate

of the error, and which does not depend upon the deta4 ls of what

types of elements are used or what boundary conditions are applied

to the structure. Four methods are presented here.

5.7.1 Irons' Energy Variance Criterion

The energy criterion proposed by Irons (Ref. 5) is the

most economical, requiring no more time than the calculation

of the rounding error parameter discussed in Subsection 3.2.6.

The diagonal entries Kii of the master stiffness matrix must

be saved, either in temporary core storage or on an external

unit. After the displacement solution has been obtained, the

energy variance can be calculated from:

59

Z~ Kjj (vi)z
Z 4B iv r 0 5,

where p is the computer precision in decimal places and B is

the average semi-bandwidth of K . The value of B can be obtained

easily from the address index parameters*:

B=FLOAT(LK+I-IK)/FLOAT(NDT)

One half the value of the denominator of the energy variance

expression is provided to the user by FEABL subroutine SIMULQ

in the argument ENERGY of that subroutine.

Some care must be exercised in applying Irons' energy

criterion. The user will obtain unrealistically large~alues

of 6 in problems in which the structure is constrained very

lightly, and in which large amounts of "self-energy" can be stored

when a single degree of freedom is displaced. The cantilever

beam is a good example of a structure to which the Irons' criterion

cannot be applied.

5.7.2 The Residual Force Method

Calculation of residual forces provides a more detailed

picture of the distribution of errors through the structure.

The master stiffness matrix may be saved in external storage for

this purpose immediately after calling BCON. Approximate values

of the reaction forces at degrees where displacements were pre-

scribed may be obtained as well by saving K just prior to calling

BCON.

FLOAT is an IBM library function whici. converts integers to
floating point numbers.

60

Let be the approximate displacement solution obtained
F

from the constrained force-displacement relations:

K'f 0 KrjJ tj

Then:

Qo:J L~

is the approximate force vector. When K has been returned

to core after the displacement solution has been obtained, Q*
can be calculated by the following algorithm:

DIMENSION R(500)
C VECTOR R MUST ALLOW ENOUGH STORAGE FOR THE FULL
C FORCE VECTOR Q-STAR IF REACTION FORCES ARE
C DESIRED. OTHERWISE, ENOUGH FOR THE UNCONSTRAINED
C DEGREES 0F FREEDOM MUST BE ALLOWED
C ALLOCATE EXILRNAL FILES

(Standard FEABL process sequence, except where noted)

C K MATRIX TO EXTERNAL STORAGE
WRITE (...) (REAL(I), I=IKLK)

C FORCE/DISPL MUST ALS0 BE SAVED FOR COMPARISON LATER
WRITE (...) (REAL(I), I=IQ, LQ)
CALL BCON
CALL FACTPD
CALL SIMULQ(STRE)

(Stress solution, if desired)

C RETURN K MATRIX F0R CALCULATION 0F Q-STAR
READ (...) (REAL(I), I=IK, L.K)

C INITIALIZE CONSTRAINED R0W POINTER AT 1ST NONZER0 ROW
DO 50 II=ICON, LCON
IF(INTGR(II) .EQ. 0) G0 TO 50
NC=II
GO To 60

50 CONTINUE

61

C INITIALIZE R VECTOR POINTER
60 NR=I

C L00P 0VER DEGREES 0F FREEDOM, SKIPPING C0NSTRAINED DEGREES
D0 70 IR0W=I, NDT
IF(INTGR(NC) .NE. IR0W) G0 T0 71

C UPDATE ROW POINTER
NC= NC+1
G0 T0 70

C FORM SUMMATION OF K(IROW, J)* U(J), J=LNZ TO NDT
71 INIT=ILNZ+IROW-1

INIT=INTGR(INIT)
KK=IKOUNT+IR0W-1
KK=INTGR(KK)
SUM=0.
DO 72 J=INIT, IR0W
KADR=KK+J
JJ=IQ+J-1

72 SUM=SUM4-REAL(KADR)* REAL(JJ)
C REMAINDER 0F SUM MUST TAKE K ENTRIES FROM COL IR0W

INIT=IROW+I
IF(INIT .GT. NDT) GO TO 74
DO 73 J=INIT, NDT

C MAKE SURE R0W J HAS AN ENTRY IN COL IR0W
JJ=ILNZ+J-1
IF(INTGR(JJ) .GT.,IROW) G0 TO 73
KADR=IKOUNT+J-1
KADR=INTGR(KADR) +IROW
JJ=IQ+J-I
SUM=SUM+REAL(KADR) *REAL(JJ)

73 C0NTINUE
C PLACE SUM IN NEXT AVAIL R LOCATION AND UPDATE R POINTER
74 R(NR)=SUM

NR=NR+I
70 C0NTINUE
C RETURN ORIGINAL Q TO C0RE FOR COMPARISON

READ (...) (REAL(I), I=IQ, LQ)
C CALCULATE RESIDUAL FORCES Q-(Q-STAR):Q-R
C REINITIALIZE NC AND NR

NC=II
NR=I
DO 80 IR0W=1, NDT
IF(INTGR(NC) .NE. IR0W) G0 T0 81
NC=NC+1
G0 T0 80

81 JJ=IQ+IROW-1
R(NR) =REAL(JJ)-R(NR)
WRITE (KW, 500) IROW, R(NR)

500 FORMAT (20H RESIDUAL FORCE N0.,I6, 1X, 1I1=, E10.3)
NR=NR+I

80 CONTINJUE

62

In the above algorithm, the vector of residual forces:

A

Q1 = - QF 4QF

has been calculated. The entries of RF provide the detailed pic-

ture mentioned at the beginning of this subsection. Another

useful parameter for overall error measurement is the force vector

magnitude ratio:

F :(R:) 41

where the summations extend only over the unconstrained degrees

of freedom.

5.7.3 Re-Solution for Residual Displacements

Although the residual force vector is fairly easy to cal-

culate, the interpretation of its meaning is not a trivial task.

The displacement solution must certainly be judged acceptable

if, for example, there are many residual forces on the order

of 1 lb. at degrees where fcvces of 1,000 lb. were applied originally.

However, a common situation in finite element analysis is that

the applied force is zero at many degrees of freedom. What does

a 1 lb. residual force mean at these points? The averaged mea-

sure YF presented in the previous section relieves this detailed

interpretation problem to some degree. However, the averaged

measure of greatest interest to the analyst is the displacement

vector magnitude ratio:

I UF

63

Unfortunately, no simple relation exists between dF and the force

vector magnitude ratio YF, if K is an ill-conditioned matrix,

dT4 may in fact be much larger than rF"

If the analyst is willing to spend some additional computing

time, the displacement residuals and an approximate calculation

of dF may be obtained by re-solution. This technique requires

an additional external storage file capable of holding K . Just

before K is returned to core in the algorithm of Subsection 5.7.2,

its factored form L T is read into this extra file. Then,

picking up where the previous algorithm ended, the original dis-

placement vector magnitude is calculated, LDLT is returned
to core and the contents of R are transferred to the proper

locations in the force/displacement block of the /DATA/ vector.

Re-solution is now done simply by calling SIMULQ again, after

which AVF will be found in the force/displacement block. The

displacement vector magnitude ratio obtained from this procedure

is actually:

F

and dF*#dF unless IAZ FI<<I I.

5.7.4 The Method of Rigid Body Modes

A somewhat less cumbersome technique for error measurement

can be employed when a structure is modeled by elements which

contain a full set of rigid body modes in their assumed displace-

ment fields. Let

be any rigid body displacement vector for the whole structure

(e.g., unit vertical transl~tion at every node). Then if 1

is introduced into the unconstrained force-displacement relations

and the right hand side is calculated, there will result:

64

Kr-=

to the accuracy of the user's computer. Conversely, solution

of the constrained force-displacement relations:

A

would result in 1 1'to the accuracy of the computer ifF F
there were no roundoff error. Now, since the exact Jr can
be inferred from tD merely by inspection, the above problem

may be solved as an auxiliary to the real problem, and the error

measure:

may be calculated. The rigid body mode technique requires the

saving only of K (before constraint). A simple algorithm will

serve to calculate rF and ZF" U F, and the additional execution

time required amounts only to calling each of BC0N, FACTPD (or

FACTSD) and SIMULQ once extra. Also, the lengthy residual force

and re-solution algorithm in the MAIN program is avoided.

Recent tests of the method of rigid body modes on a cantilever

beam have shown that when dF<0.l, dRB<<dF. However, when dF>0.1

(the region of primary interest) dRB performs as well as d.

65

REFERENCES

1. Orringer, 0. "The Effect of Cross Section Stress Concentration

on the Compressive Strength of a Unidirectional Fiber Composite."

ASRL TR 162-4 (in preparation)

2. Mack, E. W., Berg, B. A., and Witmer, E. A. "An Improved

Discrete-Element Analysis and Program for the Linear-Elastic

Static Analysis of Meridionally-Curved, Variable-Thickness,

Branched Thin Shells of Revolution Subjected to General Ex-

ternal Mechanical and Thermal Loads, Part 2-The SABOR 4

Program." Massachusetts Institute of Technology, Aeroelastic

and Structures Research Laboratory, ASRL TR 146-4, Part 2

(also SAMSO TR 68-310, Part 2), March 1968. (AD 840 614L).

3. Tong, P. and Pian, T. H. H. "The Convengence of Finite

Element Method in Solving Linear Elastic Problems." Int'l.

J. Solids Structures, Vol. 3, 1967. pp. 865-879.

4. Tong, P. "On the Numerical Problems of the Finite Element

Method.." Study No. 5, Symposium on Corzputer-Aided

Engineering, University of Waterloo, Ontario, Canada, 1970.

5. Irons, B. M. and Kan, r. K. Y. "Equation-Solving

Algorithms for the Finite-Element Methods." Paper No. V-4-2,

University of Illinois Conference on Numerical Methods in

Structural Analysis, 1971.

66

APPENDIX A

COMMON AREAS DATA REQUIREMENTS

The following table summarizes what information is expected

by each FEABL subroutine in the four control parameter COMMON

areas and in the /DATA/ vector COMMON area.

SUBROUTINE
NAME o

COMMON Cii C
AREA E-4 P.. C)

co~

/IO/ (Printer / /
Code KW Only)

/SIZE/ NET, NDT //

/BEGIN/ Address I/ /
index parameters .,

/
/END/ Address v#/ Except
index parameters

LK

/DATA/ Vector:

1. Constraint Vector / / (c)

2. Address Count Vector / / v /

3. LNZ Vector / / /

4. Assembly List /

5. F/D Vector (a) V GYM /

6. K Matrix (a) / / /

(a) These blocks are zeroed by 0RK before the first element is
assembled.

A

(b) Q E = Vector of assembled element equivalent nodal forces.
(c) Block zeroed by SETUP

67

APPENDIX B

APPLYING SHOEHORN AND STOPWATCH

This appendix contains data from which the user may estimate

the total amount of core storage required by a FEABL-based pro-

gram and the approximate execution time (CPU time) the run will

take. Such estimates will prove useful aids in making trade-off

declsions. The data given in this appendix is based on runs done

on an IBM 370/155 using the FORTPAN G compiler. The numbers will

vary somewhat from one machine or compiler to another.

B.1 Estimation of Core Storage Requirement

The following table gives the length of each FEABL subroutine

in BYTES (as compiled in FORTRAN G) and words, and the deck size.

On IBM 360 and 370 series hardware, core storage calculations

are normally done in terms of BYTES, while words are used on many

No. of Cards
Subroutine Name Words BYTES in Deck*

ASEMBL 410 1,642 58
BCON 599 2,396 125
FACTPD/FACTSD 669 2,674 126
0RK 517 2,070 106
ROTATE 1,858 7,430 316
SETUP 726 2,904 94
SIMULQ 600 2,398 127
XTRACT 130 522 23

[EABL Software-Total 5,509 22,036 975

other hardware systems. The total storage requirement for

programs plus data can be estimated as follows:

Includes all comment cards

68

Item: KWords KBYTES

1. FEABL Software 5.5 22.1
2. User programs (a) 2.5 10.0
3. System library subprograms (b) 5.1 22.0
4. /DATA/ Vector (c) (L) (4L)
5. Four control parameter /C0MM0N/ areas -- 0.1

Totals 13.1+(L) 53.2+(4L)

(a) Estimate for a typical analysis with a MAIN program

and two generator subroutines.

(b) Includes library functions such as SIN, COS, SQRT and

systems management subroutines.

(c) L=the dimension of the /DATA/ vector in KWords (1000

words).

B.2 Estimation of CPU Time Requirement

The process of factoring the master stiffness matrix into

its triple product:

K~LbL TK =LD>L

is the primary time consumer in any finite element analyss. Some

study of the algorithms in FEAL subroutine FACTPD/FACTSD will

convince the reader that the CPU time consumed is proportional

to NB2 where N is the total number of unconstrained DOF in the

assembled structure and B is the average semi-bandwidth of the

master stiffness matrix. B may be calculated approximately from

N and the population density of K

B (N+l)P

where

P=Population Density - Total No. of Stored Entries

Total Entries in Full Lower Triangle

Experience on the IBM 370/155 indicates that the required CPU

time is given approximately by:

tim 2 -6time I NB x10 - minutes

69

APPENDIX C

FORTRAN IV LISTING OF FEABL SOFTWARE

The eight subroutines of the FEABL software system are

listed in alphabetical order in this appendix:

Subroutine Page

ASEMBL 71

BCON 73

FACTPD/FACTSD 77

0RK 81

ROTATE 84

SETUP 93
SIMULQ 96

XTRACT 100

The code is for FEABL Version 1 Release 1, with a 10,000-word

/DATA/ vector. The following actions will convert the program

to Version 2 ("On-Line") as explained in Section 2.3.

Change DIMENSI0Ns Delete
SUBROUTINE of REAL, INTGR to 2 Declaration

ASEMBL Card No. 0007 Card Nos. 0017 and 0020
BCON 0007 0012 and 0015
FACTPD/FACTSD 0008 0013 and 0016
0RK 0015 0020 and 0023
ROTATE 0007 0013 and 0017
SETUP 0007 0013 and 0015
SIMULQ 0007 0012 and 0015
XTRACT 0007 0011 and 0013

70

U80 , A 0C U
aO0 0 0 -4 -4 -4 -4 -4@,4.4 -4p.4,4 N

* * C., o w
(A Lu . ZWZj

*(. LL UJW 1:Z~
*f * L) WZ

0 X ZUJ
Ci u MW oU
r (A

< N X uD

*j 6. 2: 0-LN

*i * 0 , z 2
>- W Lu z m uoiN

m * 0 .W w* ZjZ:3-

*> - *U LUW 0 CO W(.I

*1c * <0 Cl WCD3<

*0 CO w Ne 41 Lli .j W

-i) j> * 4Z 004 4.P -<L
*icxL * a- w >-W (nL N/ w xu

0.* <4 x - 2: 0 -.-:1 " U.
04 cc u 2 . z -

W* c cr.D . Wz4 2: -4 Z4)

-J <.. Z b" w0u zoo wJ~
a.-JX y " WW Z -4 Lu

LU rA Q4 -J 711 *o b u 3 n dT
LU* rj'J'3. LU W-I 0 .D 02: -10'

4 . > * 0.0 t4 -4* 7*P Iii C

2:*4tLU.* @1-*~1 0 *. be LL WIZ *2: *(3 c
'm LW 0 - a 4 < 2: _j L o /~- *- m LA 0-

Z* w e 1--*:-ow m - 0~ *0 M- IL
-* LA MW* nz*L/ZC.* .. z 0 %t *z W o-

40 * -i* C) C- M* 0.i 0 *1 II *hW (A
..j %A u D W* zQ 0O*u < -. r-~ci -4 w L 0
c D a 0 LL w -4 '-LU 4 N-W I4 *- *Z zZ

<. < L" 4 Lu '- *A Z*A.4Un

M c - x : 4 t o -1 *2: n -,d 4 c u
LU * . j*.4 W -2 -4f 0j Q 0* Z I

U*-Z :3 *-1~ *L' U 01- M 2 --4 *-4 ..
V* L) ZZ*0W-2 It -a > ob ILL* U * *U

ce*A ZZ*2L" a* 0X >4 r:) -D -4 . 9L2 o-

co .4 :2: 2:* L) 2: Xxz : jC OZ 4n 0 X 0 Z* -0 LA

Z~C " W-- ..z (%-4

*Z Lu Cce 04 *
*0'-'-X > 03 *>*

Q 0L)OU 00 000

71

WWWwwwww~wWW~wUWwWWw

w

w

0
z z-

-j

3 33
cc 0 0b

Cf w
.4 x. -

:1:Z i 0 .L) u)L)
a 0 OWZ tz 0 l

I -4 Z 04 w + U.4

I. < -0 C wC LL !p

ftwZZ -44
4 ui 0I~ -I

Z-~ Z4 14 U.3

ii ~ j If~Xl.J L 0 11 4
-4 -4 -J .- jui u 4 A

0. u U) .1

-1 _4 L 4t

72

00 000 04 o~ '-4 00-' '- N N N N N N N N N NM M MM~000O00000000000000000000O000
zzzzzzzzzzzzzzzzzzzzzzazzzzzzzzzzzzz
00000000000000000000000000000o0000

0 U. 0

**0 WO I

* * (A

*L 0
*~ ~ Z mW w'

m V* WcJ z

*) 4 W5~ N -0 ZW .
z S. a64 .0.ZL

*W *O W 70Z- 0

* 0 0. 0l . . l
*-Y > 0'. f.- W Zuj

co 0. xe 03 Z -~ 0"

4 * 1-- 0- Z ZOi LO).-
)0- J *- 0S - zO .u *Dw W

* <4 *0- S4 U<x . * . . zW

a U.i*0 Y z mrI- X WU.-
m w0 J N *4*Wi x

ft~ - -J N cc Z'll AZ -U.1-
I-j~ ~ '-j ?' '3 M - ~ 00- t-1

*L)WW~~ LU Lb U'. N% 0 'n --4

* dC~* 0 ~ -4 Y. - X 2 * ob *X m3:

I-d~. *L.I- 0 IbC ._ 3- 20C 1* 0U.1,- Z I.

UJ 0LLJ -3 04 - W 0

Z _j L%-'. ' Z tj d--d U a.U. LL mad "-4 i z -

I* - ?-- _j tv -. :d A 0 4 0 D0N0 <- dC
M*<Z Z*U >. % 3 Z LM 3 ce I 02VC/am :I

*UC) -0-.*Z -4 .U Q LU X S. e CL 7C --d -4"~~ .J lb' U

Z 10 wC3 j z4 1), ce - -i x >-V z 07 z
WL*~. *3 t-W4' .5 -4A~ * :13~ 4D Nu IfO 11 rn3

W zZ Z < 04 1-0%'. .'. U0.--.0O 4. I- fce 1 ~-1 0 .
z*.J-A*2 0 0 0-4 > Z4 443w < x:x I.- w jJ - -I'

Ui W*W0 u r3 40X2O30 -4 Z =- -iI -4

U* J j*Q -0 000 0 0 a aOO 0- 0 I-ij Cy _4 < LXL.
Ill <W C3 0 u QU- LU LL i3LL L Z LL ~~I-X. -_

C (-4 -4 1^ -4 Z jJ
ecL -4 LU ~ Cie 0 -4a

L)wo lo 0

73

Po-0C010 AN % 0o %0 -00 (D0-0NML0 0 -C~ 0 00 00 00 00 0t-WC'0 00

00r"O00000000oO o000000'000000000000

u t

o on

0 0

w ~U.
zU.1 >

Zi 0

N Z U 0

wz -.
WW 0 >- I

I- U-.
z Li W

0 wj wj 0

P-4 :c

4m1 0. PJ0.. I.- r- 0

C O i-0 'n - -3

1W 0 0 r 0 " -0
-4 ON z ... Je 0 LU

LU (7 zJ u ' z L 000.

cl:) - 0 0 0Z a7"

00~ ~ ~ ~~0 00 000 04 00. 0000 00 0 00 00 04--.~ 0 0 0
00 00 000 0 00 00000 0 0 00 0 00 000 0000000

zzzzzzzzzzzzzzzzzzzzzzzzz~zzzzzZzz
0o000o000000000oooo0000o0000co00co00

UUQUQUUUUU~UQWUuuo)ouLuLJu

0

I-

3 3
r.0 wU

uI-i

0 C-J CL

I. - r- w L

0- 0- 0 U
uD 4 3 I-3 - Lu - i W -

00 0

3C 3c - 00 0
-z 00 3c 0 3 0 u 3 -

3c (A3 -- C.

0-) LU. LL 0 O-) I - C) u 0 1o-
a z cc 0 0 t- 0 0 cc W..J z I-- Y

Z+1 i 91- .4 ;p -4- 4 Z
7- je- -44~ 3 7+3U J 39 4 7:3~ J -4lI

s, X 0 C6-4~ 0 .- 4 -- d 0I-Z Ln - Z .- I-.0 x
13. T U m cl 14 T3 ea l +1 v1 iz XC -i

ce a(U..I 0 0 U-I z 0 0 i ~ Z D.-Q'-i cjIII 0 1

U i z U1 jZ 1 t 11 1. 11 1 z T 1 l

1l ij 4m1 r- - 10w

U L L/)

75

zzzzzzzzzzzzzzzzz
00000000000000000

z

02

M< 0 e

-. J-
+

C (M 114 :)

-4 U I
z f m -ez:

.1XZ . -0 3L

140 1 00 ea ~ -

U-4W a Z 3- -dWU 'eW

1-0 1 -0
j LU U -4 -

-~ ~a+ z~ eig I-76

00 000 0000.4--V W".-4-40NNN NNN'NN NM mmM M

* *0 Z 0 w

Z *3 W - L

0 -0 0

* * %. I- cnxfA

*c * >c *:Dw
0W c(0 <-ceX

*i U) I- zj . <

LUI- I- W N Z z 4
*Z Z z '4 1.- 0 < co

> *ku e.
* cr *0 0'..-j 0 z
* 0 M0 '-' . W N U CL

*L) - *.C3 -U. -4 U -4 W

*~0 *)I- NJ.. OZ Z U

=).. *(P Li I-4 .(A W30 -4 1 - b q

-i ~J C) w. 0 - Q~
0'44* I~ .2 40 0. .4Iz c 0 W

* -~00 -4 le Z b- w x
a:) cw_ 0 .b iJO -1 W4 u c L 0 (

-4JU= tbJU. _j N i4-

u .n * *Ii 0. U. cku1 LU %D-. 0

'A L .4 LL -. WW Q
*W0 U ~ 0s4 10-4 L. 6.4 0 0 U

ce~ 0 Z z :3 1-- -W WU x >
0 A UW* W0 Z4 a. - Z 0 0. M -'

*.-L-I*n :D 0N '0 Z4 < < ~ N C (A o U 0A~
-4 L*~~IU Z ' s N- 0 LLJ Wb 0 :LD2

_-.j -3 ' uZ ly.-4 Li eUJ L 'Uv

'A -. n~ ce-1~ 4 V. N6 uUJ

3* < LUi%4 '1 0'.4 4 '4'
*z.4*J'4i Z -'. V) 0 j z 4 _u Iti' -tzn It.4 IN d4 * -4 Q

W 0*::) -.~' '% %% W -. t'ii.' 20 '- 'x4 -
X-N *IA -d -e 4'e Ce L4* ~ .- ~-

:D* Wu.* t-OOC)30 Z 0..'.OOOwo 0 cZDOZ(LaZo.

z -40 X 4 q ~ .N MQ It. -n '
-~~~ ei4 i:o 000 03 0 0 In w

LL X > CL0% Na 30' 3' % 3% 3'

7,7

0-w0%0 C 0000000 000Qr Qm 0 0 m 0 00 N I-O 0 0 00 00 000 00

U. t LLLL L L U.U. L L U. . L w . WU. . IL U w wU. . U w I.. L U.U. U- U. U. LL U-

wj
Z

0

z

0
U.

0

u-
0

z z
- 0
4 z

s4

+ is

zU.,U In '-

z II 0
0 0

IL 0

cc 0 Ili -

w o tA.5'.

w w) c

0r 10 CAZ- .
_uo i- 0 0m X , 3c -.1c

NZ wr .x4 0 0~ l'- 0

-4 Z-4 .4 0t C ~0 al'- 0W

u I.-4 z .1 4 <d~ LUl -1 1LL3 :

.,D~ 1. L L j f '-4 2: ~ I j~

41-4 D-4 x A LA.N :x 4e- x

A ~ I-' n 0 0 rl~~J
-42 3 1 LU+xi

l. .2"N ne -4' Z a .4 3c 0 -4 :, j x

'n4- 7: 3 - U--4i 0 0 -4 iU d
:x -. Zu7 1 z 0 01 1 .d u15. 1 j;0 w

N. .4 - U.' - U 4IC I 1- t1

uJ 0 4zX - 0m00 L)- Z> L fi

Wy.14OW 3WL~ QUjd LLLAO MO w owX78Z

0-4 M40op. Ml 0-ANM QOM00O OM LO pO

LL U LLLA-U- L U-LL W - U-LL . WW WW U.LL W - L W WU. . L u.U. U. U- LL Lg. u.

V)
(A-j W

< .4z
z z Wj

o z

N WL

0 I'- (A

Q. z 0

I 0 uL WI.. 4i < - 0G% -

l'- I-J om

a: 0 0

'S Ol 0A 0 on

00 LLj00 'A

CA~ (A z 0 W I- 2

-3 90- X -'L - CZ Z S
j m I1- -5 m- '1 J0 0 a N .

4'7 - VA -4 -. 0) 4 .1 IJ0 xZXc:+Q 0Z+u- - wf X 1: :- 2- -
a. ~ ~ ~ ~ ~ ~ ~ I -ji X4: 1- 1. j + mINj

* ' . z: 1 -o~ r3 cc 3 -1 D11L Ij1
11d. Z- -JO no U I'Ac~ U- ~ 3 a~-4~

.J I..J Z'JI LX Z a < -1mt4 ~ 1 J4UZ' W~.±JI Jj 'Liii:

(A -4 -J(00 xU...e e- n0 0 4 4 cc4(0 (A' - 4

L±J w :D z Z LD
N 4 1")~4
z (- 0 0C)-
.4 A

00 0 0 0 0 0 u

79

000000000000000000

LL U LLLL L LL6 . L LL . U LLU. U. U. IL. L.

S00

Is.

c0
U Q- W

0 WW-

0-.
7m .m C

(A Z.00. 1-: 0.

U .- zz-owzo 0

c0- W -4-I 0.
-141 "1- . 00' ~ 30

Z U ZZ...03Zf ft000"f

j U- -4 IC -

zJ - j w- *d .. '
:) *3 -w e3 - t*

4 w0 z 0 WLL LL w~ ac tU. U. w .. JccI Z
cc tU Q. 1 '-4 '-4 -44' :D o 3K (A WJ

> -4 -4 -4W

80

0o0 000 00 r0000000000 NN00000000000mm

0 oo00Q0000000000U00u000000O00000000
*4 < -jt

D *. :z =z

*~ *L 0.. .0Zg

~4 3 L't-

* w LL U ZW 0 U.Uv

en * cl: x

*~wz * z0zA

* 0 fr 0 Z3 0 4 n 0U
* * Z M uije 0-4

* U. r0 x~z w "-l

" >- * W Z 1 a. Q31 ocl

:Do *X X* .- 0 Obi. - 0 -4 ZWL
*0 l- *_ 1- %Il-. .Cl U..~ _WC .

a 4 * n ~fz 3Z Wzc I~ jII<0
coc .*L VW W I Mf J-. > M~ N a

v)~ Co 0 0 0 Z I- e 41- :3 . ~ .
CC W *- < l - - x tA 4 xz 0 NJ0

~~~ ~I.-i- Z Z - .- "Z 1 -d
CK (.D 3:N-CWLJ -ON ft3 4
<*:r0* QI >(.O 01o- Nj.. 0<0. 0

c~o * 0 : o 1- -. 4N i u 3
*- qZ 3ZyZoac- 0..4 Z -4 WW4L w 1

_j .1 2 I-Ut. c _4 0 _j N - l Z0.)
* A 1-3 cc 13I,1 - I. _j r%. i..(- "W .0 _

M'4 ei-* i-- - Z : - -4 $1- . ad z 5

-*<(A *WUJ MLAL (IW4 -!=
-. * W/LLo*WW4->U i)U. 4O=- If1- 0641V -n

l'-* cc *< ..JLUC4 WI-0_ Z *,.li I- %Z.4 w c
C,* CAD IIIWLJ -4 0(A 0 0A _.. a3 -4 _oo 0 0 *0

Z ~ ~ ~ W(-4 W. - w w Q(mAjz -aW ft4 Z 4 6 b-.qW

_*4 "d >I- MUl-.I:LAW . Z 0 _- DJ .K-411

_j 4- - ZU .. I L) 4 .J U ' uW j079 -

. - .3 7:* -l fl %N4 % .1 j I)(3 ml 1 j 4A _?-

*t .4.3l j Z -)(%U_4N ,13m-4_ eP

*3 -eW4 _j oi O

_j A ' 00 - > .. q Os

M *) 0N . 4

81



ODOOOO0DOOOOOO0OOOOOO 0 O 00 0 0 0 O0 0 0

00*i <

40 CD
LI-.

ccw (A

I-I I- w w

w 0 -J W

I-- W C 4% z
< Z 0 W X -L

LI)- LL w b"Z
C4 V) Z 0 : 0

w ~ I 4hS 0 Lzi
qzd.U. 0 LL) PLW V ()

z U U.L w V2: N WI
O x: 4j 1- s-i LA0c
Q3 W 0 J A x: 04
< 4i LL) W 1- W i CA 0

WL L (3Z
UU V) - 0 0U 0i-Q

W A LL 0 zU(' z C

ZI- -% A- 4 ti. (3 It _

13(A_ _j A-4 Wx le LL ID -. 34M . W ~40 D ~ ' JJ )C x
0-0 (A Z rtz .. DI P, 2Z:L

LU~~ W-w . 0N
= -4 U. CXA 0 _j

u ~0- 0 - ce0 u x c w -4L(

1- 33: I-.j- <z I- -4 LL U~L. 1 0 CO iU.-Z .2: 0

le -3 - .4 (A 4. I :4 L ;V u 4 -i 0 U.. u - Z- % j ''i1
S-j4 + 11 < -4 5- ) '- j L)Ce A *+M-4Zo% - - I

^0 11- l'. P-'3+0~. 3e 74 -4%0 - < i 7- 1

*-.,'.Jd Z A .I- -Z 3 A O Z x-2(Anz -3:4 LJ4a - .3 le z 0

Z 4- A0 -j1 1Z Xt:>_ zx 2 D it DIIZ-3 "I X - '.D -4
( 0 V X> 3,g Z Z~ XI 11 ~3 42 J -- '2 XZ 00)X z-I-
m qJ * 02N s-3 - 0 :z: - -Z( - U. 0-4 0 A0 I. 0d -a (3.4jjuj- -

(A - : 1 .1 4 0 -1 <A I4 I .)U jTZ -L Z

m Z( 4 M Z LL Z 0 364-4U:

82



0OO0MOO)%0Oa, O0000 1"(0% 0,-4,0 0,00.-0,-

t0O000000 00 000 00 000 00000000000 00000

X. z
3:

ce 0

0

.j -.
wj Lu~

-3 Il x

0 0.44
I.- o

tn m W Ul% LU

-~ I I

3j + i -. 1- 1.-1,
4~ 0 Ll0 Z 0Z

0 v):) 0 Z *0Z
ccl LU- mi 0 L Xu.

0 4 j + 0 -w

0 Le b- 4 0 LIJ 0NI h
1- 0 I~ft O.J 04W a% L --

uo-- -. 4 W- '3- tm 0 -d

-9 0j cc 0 n 1-L 0 J.-4>-ixLL U
L0 u 9=- CI Z - - X +~L

0. i- I z 0I 11Z-1 9 LDM 0 -:- 1, w~.OZ
>.- ZN -1 0 +3 A3 w 0.Q

0 tO 1%- Z Z 0-O- - az z

ji zZZ1I +XC>-U-J-4 -Oi 0 11++M* l q p%.f
CL k A : D'-4 UJ s-i- a 09 ~N 39-4- = 1 Z.3 *UJ .

.0- zMD o -- 4 i- -JZIqIO4.)Z -- Z -4 7-P s ' -Z-)n 1 0 .0 -

%--ZZ 1-0 t HI-0 0-a I : Qsao. I- Z Z Z- -o -
ZU.OOLIZZO ZZVflZ IC4- dc c~jjzowzw1c~l,_cwZ

UOI-s-.0-a~-aLU..3~,~a 3C.ctJZ C Ce L
4) ce
LU 04 c

:x 0w4 L
0I O L.) N4 . 0

83



000000000000000000000000000000000000

*e *0 a: co
w 00 a: oo x

*: *- '0. jI D LU.
M * W4 z

*i fn 0ZXm CL0.. 0 ED
Q* %.o e. N . : 00M

* :c- *o0 m~ w I
** UJ %Wa: -t-c < ix 09)
*. *'0. Q.i N= - :3 % -
*L 0.J X~ 3 D - 0 _jC

*L so. '%Xa -- cic .f 0w-
* rflLLJ 0 . V) '- zi V WWQ U

cc -'- .. 4Xi 0J CL 3 xZa Zw
* a - w ftz oJ V) a:

wi l w* 0' w~ ze i.--
*j Zb 0 Z (. 411- 0 t..
* -0 Z.0 UJ Z w w LL Yu

Z * i 00. Z- U a MZ D w M
N*X0V. *" 0' -ic 0~ 14 V) ci

-4*aJ Z* 0W a: IZs .- Z .D Ii
X*a m m uQ WW- m 0 LUU c
U* '- *D W. P- 0f 0 .V) *j. Wq 0.4WW L

4qLtu * -b- -- %0_ N~ w ~ -~ -4 01- C V
>. -4 >. 0 n ob 0 '* s-I O-0 W -W

0: (D 0 0.- * W-Zm)- IA .1V)Z

n* cocc * -- X w"Mar- .4omu
0.*-m*- U V. i W4 Cf. u z U.L *X Z Ow
73 *J7 N cc ~-j 46: ceza-Z

1* i*3 I- 0- Ns 1. ~ '0 %."11 -

at*-i *s- LI ob a z 0% v-n W Z X l

A S-w M '" a i-a: P.-.. IMP'm t -2! i. iot
zLJ 4 4wlb - 0 *- zd c4 4b << =:~ . : 0 M w

W0 inL.)*0M ~ a i- i-U -J- ccI -..J O CF W :3.4 f n

a: 03C a:-J - X

I--~ .- * t.. 0) * P4 - U 64 J

< fJ-4J i'k0~ N.i A- " - I =ii. m ii 0 I

N- nn C)-0%% ft% J L -4 C -j -j -y--

a: N- -c *- 0Ly.4.o-

w 0 )00 % n-. 00 3 T 000 a: X4
L% 00Q (0UL)L. j LU .X A -U L( LL .U

zJ QU ccOL. 0 LoO)NLA0f

844

A



mmm- I.t -r It .r..t %t .4' -tn 000 non nO %iW iW L~W 0 % %000 0 0 0 0' - I- r-

000000000000000000000000000000000000

< cc

Z 0
LL 4

w 0 w

z 0
4U 0N

<U 0 N3 NNcV

N f-4 0 LU*
0 0 >

- -z z .. 0 0-

II I.- .1L L WW~ -
0 sIS 03l- Z U.

*i 2. - ,'.

C, Cl 3 ~ 0 0.

-LL U U. U. et-1

t it Of -jp z0 14 1-4~ '.>*
,.1- 99 0 M- -404 5- .0

i- - C0 0 4 0 wMMUO U( L)~
w.J0. U Z Z let -uWJ4-1 '-* * * *
S -0 WU < <1-- 0 0C

C',z -.1J z - - MZ ~3 MDWWW>->>-X>
zo 0 < N '-.' a: ~ 0 _j__j -%.ft

1.9 - , l,- en 04 eta.C X 0 0 O O

Z 4-( 3 . -- 44 Li)i

0 -4~ . -. v - - It-jA Li -a .'.A U. -4 >.

.1.1 r- - in 'A .1 1".1 0 .1 0'0) ~ . u 1 : Z*** 1 11III 11 fil
l' 1 In 0 "le 9 .3 0 rh 7 % (7 0-7% I Q%7
D' I~% 1 z .4 -. 7-. * 8.; ;* - ,

en Ma; ; +1 0 "a Ic - 4~w -4-4 -4 N N

1111 Z' Li4.....J'4 0 0 Mi *1 It* '-1

ZC-s-WU.cc~c1,-7~0 Zj U.XwaZ9 U.Lowacl A 0 33 '30

(A N LU Li

L/) 10 <

JJL0 uLi0

-65



t * rLAk w0 mm m 0 Q~ w w m A 0 %0 0 4 N UN '* C% '0 0 V% Q 0 0 N 0 A '0 0

o0QO PO00 0O0 0 0 000oo00 Co 00 00-4 4r P-4P- 0

0000000~000O0000(000000000O00000000O

I-

.4 z-

z j0

WO 00

0 L).
9.- 0

C) <4 U. -u 0
ac 2c. - C J I- w ,

4 x Ln Li (xLd

C.) co w- -NL z l'-ixc

'-IxI1 00 f-4

0~ 2 . L W
Ll. 9..o. cjj 1. -UJ~

In <4 I4 0
WL, 00X -1 "o. z 0 DI-

'AN M4 -1 "In I- 1-.
0 ft ft ft 0 z +
(.-4 N Z W -.. at T I.-4

- -0 AC.0 CI(A x 0 -.1 c+_j Zt

X0 0 I0 0 1 < 1% ix 0 _.j.~ 6-W 4 0 .- 4 U UZW

V) .ci I 0 -.1 I- -j -1W.+
: tD W _4.. A.- -- e--I"+. _ -- 0 9.

7-4) 4' 1I 4 % 4W 4

* -. UD 0 I +.* +
0 W -4 *.4U. 4 LL -49II lIg- -4 11IL.r-49I- (.

0 , 11-4-, @4- -. = .- 1 ~- J ._j '3 11: .(A1 3 aTJ

-~%t4~f~J.49 -.- n 7I- < UA :3 -.d A < -.4 0 40-
-- W~-J ac 40 ZJ 1 1t U-4 '.4 11 LJ4 ji. --o. 1) -e

4Z It 9-.e a-4-4 1011 -1 -4 " CeQ<
0 . 3 n oIt-- -0 I--I-f.oy n L a.O.m -- LAO 10 m f- 4-1

It m 00r . 0( U)00
0 a. w .4

U 0 00 Q Q

86



00-. N NN NNN M o-w cdNm mo-wo 0M4%0tW t 0INM
"4"4 4 V4 P4..44 -4NNNNNNNNNNMMMMMMMMMM- t% r

P0000004 4w4P4w 000000 d " 0 mlPP00 "0 O0 0 4 004 000000000000008 4 P

4441.4041-4440.41- 40 441 441.41- o.4I.-4.-444--1.-lo4I-4 I.-44

000 00000 000 00000 00 00000ooo0.
* *U

*~ *

cc a 0 U.1

* * 0

*~' * C, I L

* . V ca 0

LL * D- 04If

* * - C -4

0 > LU cU I.

* * U. -~ 0L >I

Z w ob 0 -i'

U. c s-U) .It X-j

Z.1 l'- " 0:a
3 U W9 -. 1 it N . +

> - 11 l~(i @ 04 0e -i 4U %

x 16- 0 0 .. 0 w4U z

II. 9 x 4c x .q I. -
0 10 jz4* (A W -10 xO

*0 4 4 - 6-4 0 cc
*0* IlU LU W.41L0 II'. ' 1,-W4 < C IZ- .- I- 1-
*L V* z4 CA ow~ 6.4 0 j Z NX 4 o+o "bdC

4*10 x0 v a 2: *r * * 0
*:* "~o. w4 -4 * 0 .4 -q --1i - P-4.4 -. .4~I

*1* --1W JBAb " -Y h~J4J . 44 * -4.. *j l5 5jj * f ft ft ft
at Ir ob 04 .4,3~ s -j -j U 44- -4 -

o b4 . 44 - ~ 4. I 1 .-. D -

*444..0 u

13 ul 2Ul 0:0 c0 - 47 -
*-'*I-3 -40-U ; m .4) ~'.0 04 .. 0 N40 0

W Wj -Q. - 4.*- - -

aC>*0. U. 00..

MUU O U 144l u 0 14 :1

87



'r V uoo m mm io I InU-%Ur Q V Qo 0 040 0000000 0 r00PA00000 I P

z

10 - w 04
4 0 In 0

U. 1% 4 X U. >
W 0 0 ) 6.4~L

In a 00w w

W 3 z LP4a 0- C>
0 CU. 4 IllW

.j w~ 40 <: 0 a: 0
w 0 0 10-W Il Il Z

0. 0: uIn W C o A -

Co 4 tAWII NI - w 0 r(
0 a:..j c m x-.

U. LL woi 01- oV)z WL b- 3
0 I.LM I- IIC
0 61 cr. 3Z z -V I--

')0~ x0 00 0 zWIl
m z (a -.1.z a: c-

.j49U. z0
oc cc U- a I-. -

40 a Ill 0-O06 z aM i
CL (A. /o CL Il. w . cc

1/) N Y. 0" 4qI a C

a:c .Il : uj , *e cc
0J W04 .. "aC Nt.u W. n IA

Z x ~~ I cc 0 l- f-W IJt- 04
4 I--WO w CaU- (A (4A CC W 0 *j 3*

W tA j I- Ill0 W I'-a cc IlW 4 c
x = (0 0I *C0 0 v0(Az 0 -I 0cc

W a a W: Cie 3Z CIq 1- .. 11 U.
4% C q n ... 0 " - $ a

3 .1 LU. f-' LU
lilt T i -.J 0 t- Za -4Z ZO (AWL

j -I- Z I n *I4-WU I- J W- 0 W
t.d 80 zUo Url-40Z (Act U) b.4 c~o 0W c

a ws LL WqX4)-z-W<W:)z ZW 11. O 04
w. c a: . .J Z 04 0 J-J:D- < 0 Ill LL 0-6
cc: cc: wL os-i: .060 OUa:". Z :lc> 0Z <4a:

I0- 0 ..% 0It- I-I - 04<0- f,-w4
D 0- Nin Z(m)-OO4u.< I- X~- 04fo

NU U.1 .40 Z f" 010 . 5U13m

0 . 3 LU.1zZU LU 11s E I *J-.J 11.1- Onw -

k.4-4a tA -d a~ 9 .1 UJ -3 :t J *%'o A -J+4 -4

3 ~U. 0 4-U 4 -6 JJ .U34(J0ZZ itj x zxwI.w

-4 j -.4S.*J " (51-4 JU o j -0"4 0 Z kLz- >MI

4 O JW . lA W j 0 11 Ill WU. L. Ll. O ' 1 C It
00 0Zw >zzw . U. -0 m ~ m . ce I~ZZZWWaZOa: 0

Ona 0 -W - - - W - %0 4I--Il- x - 0~~ 0 11 134 11
x -LU Il l- m * z oAw LJLo) .9 I-

cA: 0 -O't-I- (A 0 -%W - 0 CW -4 1- u 1-L
UJ- -ZZ. 34x Z 1Z4 = T0 z U. W WU-4
a. -- _.j 'A -d 0 -3co " --

U~0 LU) U U JU U U Q



0%coc c 000 00 0 0 0 0 0 0 0 4d0040.440 4

In 0

LU C

0) 0

LUU

cc W C 4

w 4

CL - L V

N IN

1- 0

00 0 - 4t 9 .
I

WN NlUL

J0jhJ~ 
w V4 PO "I z

0 a 0 ( at cc-4 Mfi me U + *0 - -

00 00WtJ u 0 ce LL 0
cc Li- z

IW N O - NW "W-o a 2W %

-j 5-0 Zx j i mv :3 w _j-i -u U

; qOC4c4q 0 64!d .UW U 0 1- -. 89f



r-- - N4 0 Nm NY 4r in N I- 404 N t eqU M-* in 40f 0 4% 40 '4 Cc 4 4 U1

MNNN NN NNNMN NNN ININ NNNN NNNN N NNN NCN N C

w A
LU ~ *wL

v *.
* w *J

* *(.P

* *
*) cc

* UJ
JL ~ * jV)ru ~~ cc* I
ZI.* -4 4
IN ~ ~ Q :1 c
u * 1-

34Ctm * 'I-f
LUJ * m W xL - w

6- * - * o I- Qa1. -3 x0
Z'J ~ ~ CL -c*+)o4 .Pq" , .

U 14. 4 c dwx

0 0.+ 1 0 X .1 lo -old 3g I. % n Z-4 -4 4 "
oi *4 Q-S I-N: C- a -XJ 0 4. j .J
>. -o ld A- o ,o z( q c 4 " O boo-4 s 0 af

X+ *o "*UtU. "I+ 0 L - 4"Iol" a. 40 .1
tuuxw e . j m) I-I-. 1,- 0 *0 a: 7 0L

P-* Me -444A A'4I IIz4 %4 c4 114 A I f "
Ot q..4 -4C V0 3 l' - 23cZ1-4 CL It NA (x% N CL A II*Ldtd %u ba

U74 a.* LiI-i L j G O " a 7-) . % 1 7 7W

-J "2 )P"it-4 u. - u fWX "U.n- . . jc

W~ 4-d *442 a4' Q. ".1ZZ 2
LZ V) * 4 * I. Q ci - rW~ - CL ZP -4 CLe.~ 4
. U zf.~t. * * tiL w CY C14 a f"a

24Q. N U. CL L16 ~-
I~L~LI LJ*~*1J W0J .4 Q

L3~I~fl* *N'd ** **% t'44 (90f



zu
ZZ z

W0z

WOZ
z w.
-J3M31l- 0

X . LL
ZAi- 3CU. Z

j 0 0 x.

3t.., 0 0

x~~~ WJl- _j I

ow - X

0 0WW

00U 4 W- - LU0LU 0

.4m%0.4 no I- n w 03 J-Z

n x. .LIAJ " 0 -f z11-4A 8.- t-

49 ~ LL - I- -~-V 0- WI. 1,-

it Z4~ :3

49 4" l - 4.h... W..i snx a 1 1 1: Z Q-~ L6 -A 0 .1
d~ 11 e -9 1 Ld- 0 < - i ;p - U - *U j .1

d4W- -4 WO Ixm -.J 3 Ip * 4 .0+ l' 0 X "-

4- O *U'. - <W -J PL W ~ R LZZ L JU.WZZ '3.4
~~~~~~ II I *Z0f IIZ . 0 .J'

Wl,4-4~ km. N CL L I 0 tu Ml-
4LJ. t -I A-- . cc. I- U.1 w c m z Lk W c

W0 CLW u lZ I*-.1 ZU &. .I
~ll~lI~* 04 I JJ~ ~ JJt.

NO 04~W . .Dl UU.LL U..-ll

0 0 0 0000 00 000 000 00

4 44 44 4 4 44 4~Z 44 44 4 <A 4 <44< 4c4

00000000 00 0000 00 000000000000

z
-J

w

z
wi
x

0 0 ZW Wou
1- 1- ow I-

0 7-P

le-

UL me~ .

0. U.
W4 3: 0

-*. -. 4 " .40_* 4- - dXw 4C

-4 O

U. - 4 49 -: 1 0 .- -0 -% -%L

4L !L~ "4-1 n4 U .44 -# '*- -4k.-

C- -41 - z 7- Z ;p ;J -.. -- - 1

C6Ie (3 CMel . Mi -4 - *- 4 II ii M L*-t'tC t

ir ~ dC H2! - r- 7-a !m4 U --U 1 e 1 91

WWj D0 uJce0 <WU0 U o 0 WWUJOLwO .JWZ
D-- 0 1- 0 13 Xl cc 0)z4 >0 C .100-0 C3 "I W Wz

1- -1 4

en . M .. C i

92

-N m~ 4p Wm' two 0 - NM fi *I- a~ 0 a Nm M WI P. a @p% 0 04 N m rlnc'
coo0cc00004. 4 c. .444-NNNNNNN(1NNfjmm m mm m
000000000 00000000000 000000 0000000000

%L Z "W01 x W . Z *O OM
"d* W 0'49 c x --2.N -4W

*0 m Z- C.0 =N 0

Z W> M Cie~4 .4W ..- *4 0%f

* *I- ON.JZXZ N. *U. L X
*W *, L4OC*WWV N 0 XU

u *Ie Z* 4. . X *X *1J L

f" C .t . t 4 wOU4 in %
*J *U -r In.Z.. s(4Om *x

*4 *i Mo X'fl -g Zoe4 oc -t *
%W C 4 1P.Z .C oe M 0.-aceL%'f *0)(
ae XLZ 11NL("4X -4 -4 W 2

D.0 M 4b dc5.W. U l0 00 NU ca4 A 4 $
*0XN5- *J A0 -I'00. Q' x
*~CY 41A 00 0.. mw .i .4 W %%S 0

cc cc 0 oft a. *0 4c 0 ccj zI- LL3 *2
=*! * (A 7c -4 xoI-Ifl'4Wu 00-140 4-. X
IA*'l to le - NQ=N N xU .

v tn sn X UI44tf04 WLA ' X~.)
o 4b. i.. -W OXD0 W-d wLu 0uI- *Z X

(A* et(30 N '2 a %,U XN0%% D - CCN = J 0N 4W
,4* 4 a*0 P4 Nj 2 'uP4 .tWJCY 0 2UN 4 Z" Z2 M
T. * WQ J*0 IC Z 0 4%0)> * a WJLt.LW11 W IAULU La. *cc W0 P4- JN v4 U CdWv4-%Cg0c-UZx _.j*
Z*004Z*~ -% 6 "Z %* j I-- aw'ou 4 IflW"4C %0 *4

.wZ '" * =- J N M Z &W X0n>4""wk.L 1--
O*IU* 0 c i-j ! 0 w 04 NU.L- 5-. i ab aW a *V)-

Z* UWWU* t- d Z o 04 - * %l--002 Nbx%. 4W.J-.*
6-0 Z = - - M as T46 2.-4 3- -4 0 1 JWin I* W -

tn " 0 02 z v%)XLn 4nW44A.J- ox U0)*§I- x
5-*4ILL* W L-c 5- " -0 azw.Jff4w-+)WI-* .4 M,

03*CDW0*;09~0 In W-xww -2OO~WQ.W*W -
2* CC *0.- 2 .l D~ (A In fl-j C00nW%. 4$- -4* .
W* 0 MW* 0o a. Z.J 0.0. XX *cc(DhW2Ifl 4%fWufl

0.*~5*0J 0 %-J)- a "4v4M0W20In"1In2 00b" U*0 QC
*-'u ~ x00-JZ44.J2 4AOz M 042*2W 0.

W W' W -C0 I xTc - cc
=*.Jac .*-- '2 QUr4WLJ X0 J41.cgX M-40 1-4 '-.

W*~~ ZO 9%. %W- Lm- -MZO.N44200t &%t.A004,LU
(A*4t Z*W- Wu"%.4In * *0 ONZ 0. X0 UO. c* Z0 in

41 ~*~-%.'40b-4W0-%.WX,-MW0a0O4*= CDC %.
wu*l-z * 0.-WZ4WuQQ = 64m= 'UW2"4 ftm =* 01-4

Z2* Z wtIA* ZZIW0JZJ-ZttX1-- *Wv40W0n* W M
0"*tu 5-00%%,*.k.%.WLWW0'-W2r aN0.JfLAX0 *-I- 41 Z-4

-~~~ * 4-W~ -00 OMMSW NI-x uSZ*I -

j0 b0 *Z ->>z4 .iJ~~ * M "4
L4U t' 0*JW 222 .4.402U0 0,- *muW2I.> *Z0O** x

13 4 =* ##Z ZX~ ,c NN. -A ~ cg z 5 * '5 c

flI- LW4 ZOOU;JJQUUW.U-L=~ *;Wzou. <%.-u. > * u
-- a M (AA ziml*ot" -.4NMW -4N*aa

z CAC 44 64.4 N (I * Z4"
- u 4vo0 a * wWeO

93

0000C 000NM*tn4P : 0 -IN M00000p00 me0o000NM 0000%004

M In If #4 -tA 1/t #A 04t qr I in IA M 414IA InIA nIAM 4 404 ONO IA 0A In 4nI nI nI 4 In

qxxc:4WKxx~t)(*,CZ -*0

x(xxcoWcc)(x fIAnN~x..uI-N cc

X X aS.c *f'4WM I ZA *o * *4
)(ZAt)C oZK %Co Wx4j~ obtWx *

Ki-.-x %%~cx j *X.J04 * *

X% i cc 44 *4 * *bj a ft i

,-4XXXX .. ~ r Vf ti *Z

x XXM0 *cq4u.)(..LX* *0 M2
XX6*%%.ON sbx cx x o2K *-*
X t . a 4 X tOCO (L.X4 XZ I- X 1 *D
*t4co< *o...o4 OZM oxz, ft * *#0 *Z
lb a co4c W *.- V10 fXf M aX 4. 0. S. * *Z *W
K.Jo<WX.JCD-KN ox4Kxx * j

ox't0 XX P am U. 4 N Co z o ob
*.it *4wKx)- 0. MvMq~u 2x x *. *

.j *-KNKZ ob S. ft2WM..Id *KK *Z *a
.JxM ftN~nx ofl~xK-i).j-KK * *

en *b *X X*f. n4%9 9
o-ftM~d& ftQ tx~p ft oxq * *J *

on wX4.)(4w4 .aX w~4t=ti * * *
a ZMuX t Mft-4 . XCO 4 f"%t.% * * CO

*-4flM 0-4J"4 ox o. *c4 2t o * 49 Q
= off-x *,(~kL KXCDZxx%'% ft*

-. 3 -t *a 4 4 ft US 4fK *c *4 *'QX

~~~~-t *f.Iz 46?~ (0KX * W

<c=ox t" 0 *wZ2xjMW~q K * *U * fn
x 'O-~W *-4(X .- f%.Wc4Jc2 *- > U)~ 11 * *
abooaLLXa o- -WLXtnXNK ot 4c vgj M t

X "LUL J04 tuxkn a~ aig 2 I- - Z U
,7k-ju~M~x= "%4 0 LA* . 4Z 4z-

f ft. ft * rL fl K * P- P"0 >4 40 T I5A x AA a 0 l ti
X~ X a -k> a 4b AA -4K 4 A *Z a04ZIf i_ 0 If4

A ~ ~ ~ ~ ~ *3 -4-f U.** A0 o 444 4x= 4 f U L f

U-. t (' ft %%X t ft IM X.K C AL6 - j s~- > 3* 'J 3 o_ -. -4- a- .
-4 m-tLn* - c % c co iz % . *W* X* -t 0Z-JbQ

cc 33 3 uU 441
C6 *04ZN.-N4

*.4 04L .K K~X * 2* * N ~I94



000000WW 00 =mo 0O 0% 000 0 cp 00

0040 00 0 0 0000 00 0t 00 incmow

0

z

0

91

-i a

3: WIO z
10 q 9-~ z zu0

6-4 *01 tA 0 %-t T(
Li- 0000 -

A~ 9-9. AZW Z4NCC

O- sz -z 0 0 0 i-3nI

+ ..z0%, :30 It~0 id ~
3x 49Q W6Z 00-0. 3f9-

M IA ca IU m1 Nzfl-d c-rn W
11 z I-- T O "sU 1L w% t. w0 4 (9

:ld u LLw0 4zz x . .U L w -x 0 w

6.41.-~ < ".i 4 X - 1-0 .6 -4 i- .J 3 0 0a0 w~ W
z 09 X.- M
- 0 01 0 N

Q. Li (jL u

U U UU9



oo0a00000 00 NNNNNNNNmmmm mm

W44 O"4P 6. 0" OW 0.4 4.44 b-0 6" pbo b- 4 b.4 Ow C-4 -

CLUI/U

* ..

* * L)

*U *

40 *c w

*a m m X: 0 0

* q *,L W 0A z
* ,' * t -4 Z 

* C (* Cl 0. W .J w

4c x u * w 1-- j - O

AI Z 1%0 . w x m 0 0
*0 *m P-

%* ex - 6. w .4 -1 1,b- /)3-
*( * .lb 3I- 3 Z 0.S i e L

Ci * < ~ V) U CLX U P0 X 0IL >0

* ca *J 0 %C a 0 U) "Z .NZ cb .
Z ) J' 0 ct 0 Z a0 A L c%0U yu .

** -4 ZU* 0 3c- . 'i :) co 4c ceV A i

-j )I 'F- 0U 4 -0. CL (" .U. t

V Ud 0- -c m... Ne a~w 0-4 .zI D- J -4
Z C 4 1 W W*03 4 M~ 4~ 4as 4 g.,): 0

Z ( C t 8/ 4 *3 ;p 'i 0 .

ZN. z * 0 W. Z o -. binW.'
WT Z 40W 0 Z.. (0 -W a _OO W j- - YXI 0 M.- 0

ko *0*-0 I- Z 4 % ,% %-~ 0aL a- 1 1.4 ) - 4/ 60
I.- x jI--~ WOW ne J 0t 8/)-,/

n)* Z*-4 W V) z Z? / i -S /)0 --4 U1n -V 11 11. 1:

0 ~ z 0~~0r-U 0 z Nz z

W Lu- U w0 a0 00 cc e J LU
0.3 C) Q at 'o% 0M . X

00 ~L) UQ



_ 01 0I n4 11 - at a N m m4 p- k1 0%0 N t an 1 4 r.- wi a, hi N

z

:3

l- z

-U 1%

z -z

z o a - t-

WZ) OZ It( I

-n z n 'J -

"zz liz -' a

hi U. -" )- > ( UZ

49 0 4 0 w M > 0 0 i .4 uW I.I WL Il z Lai -!-j
-,C -7 )e -Z 0. 0 1- U

-- 4 0 Il zw OW kZC zz
f -5 J 41 .Z-i

14 U C% t Z -4 -4 fn t <3,n &f ( 4c * -4 Z -4-

-1 )C mLi %0 6 7 0 3 4J0U .4 z.Z I- 34-

-%(A GWZ. ft J q ZC J I .4 R 0 Z :

0"w Z Z j 'J e _ -i 33~ i -0- :) UZ- U 0 0 - - 4 z fl.
-1 1I 1 U.11 t U. z El - >lz Y. 4 -1 . 1

.Li J. %Wi i . 4 -4 '.O-4 . l W 0 -4 1

u -r 'Z > 0 .4
LL U.-1 0 m

97



I-

z

w

z

LUN 0" 11

*~ A 0 X

.0 <t Z I 0-

Z 4 6- (A z z -Wi i &A 0- C. e
_l -a >" ux o c U.

- 0 0 0i W L 1% -40
z Im 0 * z+ua

-% +.. -j '-,3 4 '3
le -4 < X *. Z <

jiIf ce L W . tA IJ 0 a - u II
ne :2 *3 X- z I z . z .-+ . i I.- u: W. 3 A *4 k,

0~~2 03 -3-. 3.w~ WW U- )
17 - 21 v ZJ0 Z-w4 -2 X i

.- 4 1 .4 "-%.d -4 't .4 zo..411 14 x i :R-- -4 - Joe~ ot . 2 W -4X 3
vI - 0- 11 ~ W L. 1qZ I Ui cwU . i3c Xu 0 D49--. 0WeOLL OL

* (
i- ii 1 ~ -t .I - - I X.4.4 n I 4 '3 X ~ u '-Z

Z -. ' ,0 3 /j3 ~ 3 ~ . IIN 2>s) h.. ~ x I Z' Iiz Jj



00 0Nm4 0 0 1%-0 o4N m In % FI

0.
b-a

(A

U.

j

C3 4i

Li -
U.1

(A 0 cxc
X "4

LL -L
0 C3ZII

w- - le _u M D

Q 1- 4 W: -- 1+ L

It Xe 47- 2: + Xz -
2:j -d-4 U') u.0-

Z I.- V :) It '-M

-aa4 t " 4 4 _j~

-4 U. le' I- - J 10 0 41
11 --311 O g 2Z tiu< Z .-m.j 0

0 .44 :,, o mwau.0z

4:D 1-4 c C

Li (A


